
Consistent Clustered Applications with Corfu

NSX team:
Medhavi Dhawan, Gurprit Johal, Jim Stabile,

Vjekoslav Brajkovic, James Chang, Kapil Goyal, Kevin James, Zeeshan Lokhandwala,
Anny Martinez Manzanilla, Roger Michoud, Maithem Munshed, Srinivas Neginhal, Konstantin Spirov

VMware Research team:
Michael Wei, Scott Fritchie, Chris Rossbach, Ittai Abraham, Dahlia Malkhi

The NSX R&D team and VMware Research team are
using Corfu to build breakthrough, auto-configurable,
auto-managed clustering management tools.

1 Introduction

As the data requirements of applications have grown in
size and sophistication, the age-old DBMS model, op-
timizing for applications with small memory to interact
with a large DB, is being disrupted.

At VMware, engineering teams who build dis-
tributed software have moved in recent years away
from monolithic database systems and started us-
ing NoSQL/NewSQL scale-out software tools, e.g.,
ZooKeeper, Cassandra [9], MongoDB [4], Kafka [2],
and so on. These tools provide industrial strength sta-
bility, and have a thriving user community support. They
are successful in taking care of persistence, durability of
data, and data scale out performance.

Yet, while successful at moving away from central-
ized databases, all of these tools manage data outside
the application scope, in a format and semantics cho-
sen by the tool. They provide very opinionated support
to application builders, and little help in expressing and
managing the application’s own concurrency and trans-
actional activity. They store and manipulate data outside
the application, and in fact, our experience has been that
these tools fail to help with the development of appli-
cations with large and complex state. More concretely,
developing distributed applications that have complex
state still necessitates, in most cases, a DAO (Data Ab-
straction Object) layer. The DAO is a transactional run-
time that translates application-level data abstractions
into database queries. DAOs are crafted custom-made for
each application. They require to translate and transform
between formats and APIs, and they result in an soft-
ware architecture known as the Lambda Architecture [3]:
Data is fetched into and out of the DAO, transformed and

translated multiple times, into different formats, and du-
plicated over a plethora of tools.

The experience of an application developer over Corfu
is the opposite of the above.

The application builder owns the data. Corfu helps
the application side maintain an ephemeral copy inside
the application program, in the format and logic that the
developer chooses. The data model provided for applica-
tion builders is rich and has strong semantics, making ap-
plication development easier and more robust. All of this
is achieved while retaining the performance, scaling and
high-availability properties of share-nothing platforms.

In the rest of this short paper, we give a brief overview
of the unique Corfu application-side support (the reader
is deferred to previous Corfu publications for its internal
design). We then describe two on-going activities using
Corfu inside VMware. The first one builds a DAO-less
SDN management plane. The second one is a general
purpose in-memory distributed object store that has the
potential for significant performance and reliability gains
for application developers.

2 Corfu: A Database-less Platform

If we could start with a clean slate and design
a tool that aids the developer of distributed soft-
ware, what would it look like?

Most of the wisdom in Corfu is concentrated in a
client-side runtime library. The Corfu runtime builds
in-memory transactional objects backed by a shared log.
Objects may be arbitrary Java collections, expressing the
application logic precisely in the manner that is most nat-
ural to, namely, as a programming language data struc-
ture.

Corfu manages data on the application side in the form
of transactional, persistent, replicated objects over a dis-
tributed shared log. Since Corfu runtime objects are

78



Figure 1: The Corfu distributed shared log.

backed by a log, the state of each object is represented
by a history of updates.

The distributed shared log is designed to spread data
over a cluster of storage nodes, each logging data in log-
structure (append-only) manner. It is replicated and auto-
configurable, hence all the heavy-lifting for reliability,
durability, elasticity, and total-ordering are made in the
log. Figure 1 gives a high level schematic of the log basic
architecture: Log append consults a contention-remover
sequencer about the current offset of the tail, and con-
sults a layout map to translate the tail-offset to logging-
units. Accompanying papers provide more detail con-
cerning the design of Corfu and various optimizations
built into it [5, 12, 13].

In memory, the Corfu runtime holds a single copy
of each object. We will refer to it as a Concurrent-
Versioned-Object, or in short a CVO.

Figure 2 depicts the life-cycle of a Corfu object in the
runtime and on the log.

Figure 2: Transactional, persistent, replicated objects
over a distributed shared log.

There are two key design properties of CVOs:

1. Lazy update: When an update record is appended
to the log (or to an optimistic transactional stack,
see later), it is not applied to CVOsimmediately.
Only when application code accesses an object does
Corfu applies updates to the CVO.

2. Single copy: Corfu optimizes for in-memory ex-
ecution, hence it keeps only one version of each
object at any moment in time. This is enabled by
rolling CVOsforward and backward, as threads are
switched, to get to their desired version.

It is worth noting that the single-copy property sets
Corfu apart from traditional MVCC (multi-version con-
currency control) systems. MVCC supports optimism by
maintaining multiple versions until they are no longer
needed (i.e., no transactions are open that needs to view
these versions). There is a rich body of literature con-
cerned with efficient arrangement of MVCC informa-
tion in DBMS [6, 11] and of in-memory OLTP sys-
tems [10, 7]. However, the cost of retaining multiple
versions of data would be prohibitive for the application
workloads Corfu aims for, as we see below,

Not only that, in Corfu the application annotates ob-
jects to indicate when mutation to the object conflict or
not. Corfu allows concurrent threads to optimistically
mutate different versions of the object, which results in
great flexibility and concurrency. By comparison, Mi-
crosoft’s Hekaton [7] lets only one thread operate opti-
mistically over any particular object, hence only one ver-
sion is speculative at any moment in time.

If Corfu was single-threaded, things would be easy:
Each time an application made an access to a Corfu ob-
ject, the runtime would ”play” the history of updates to
synchronize the object state.

The Corfu runtime, however, provide multi-threading
support, as well as supports optimistic transactions by
each one of these threads.

Each time a Corfu thread performs an access operation
on an object, the Corfu runtime synchronizes the object
state to the thread’s desired version. At any moment in
time, CVO state reflects two versions: The first one is
the log offset, up to which all updates were applied. The
second is an optional optimistic version, an optimistic
stream applied to the CVO by a speculative transaction.

Inside a transaction, bringing the CVO to the thread’s
desired state means synchronizing it to the transaction
snapshot, and applying optimistic mutations, it any. In a
non-transactional context, the desired version for an ac-
cess is the current log tail, guaranteeing strict lineariz-
ability.

To get to its desired object version, a thread may need
to roll back the optimistic stream of another thread. Then
it needs to roll backward or forward the normal log to
the desired log position. Finally, it needs to apply the
optimistic updates made by its own transaction, if any.

To commit a transaction, Corfu simply needs to send
a request to the sequencer. The sequencer checks for a
conflict based on the transaction snapshot and the current
log-tail. This is a trivial check, requiring the sequencer

79



to simply compare the last mutation offset to objects in
the transaction read/write-set and the transaction snap-
shot offset. In this way, in a single round-trip, the trans-
action obtains a transaction resolution response, and if
it can commit, a reserved offset in the log to persist the
transaction record.

3 SDN Management Plane (MP)

SDNs became possible with the advent of newer gen-
erations of commodity hardware and next generation
software. Instead of having networking functions like
switching and routing in custom hardware, it is now pos-
sible for these networking functions to be re-thought and
implemented purely in software, typically but not neces-
sarily in a hypervisor. In a scale-out system of many hy-
pervisors, the notion of a logical network topology (the
set of logical switches, routers, firewalls, etc) is now dis-
tributed, running on many hypervisors, each doing local
packet processing and forwarding. SDNs contain a sep-
arate scale-out control/management plane (controllers)
that both implement networking APIs and also coordi-
nate the programming of the forwarding engines in each
hypervisor.

Rewriting the NSX control plane software (a prelim-
inary description of which appeared in [8] over Corfu
provided significant advantages which we proceed to de-
scribe.

High Availability

The NSX SDN controller exposes a RESTful API inter-
face for managing the logical network topology. Using
this API, a client can create, modify, or delete various
components of the topology, including logical switches,
logical routers, firewalls etc. We have migrated the con-
troller on top of Corfu as a datastore for this logical
topology. The benefit is that now the datastore is highly
available with redundant copies stored in different Corfu
servers (Corfu cluster). No single failure is tolerated–the
SDN controller must be able to serve APIs even during
partial outages or network partitions.

While traditional relational databases could be used,
they are notoriously difficult and expensive for an admin-
istrator to maintain, especially as the SDN controller is
shipped and installed directly by a customer. Moreover,
most relational databases do not provide quorum-based
replication and typically have limited scale. As long as
there is a quorum of Corfu servers available, the SDN
system can continue to serve APIs.

Transactional

Updates to the logical networking topology via the API
has requirements for transactional behavior. In some
APIs, several logical entities are manipulated in and all-
or-nothing (atomic) model. For example, there are use
cases when creating a new routed logical network (logi-
cal router) that require that both the logical router and a
set of logical switches be created atomically.

This is where Corfu data model greatly contributed to
simplicity and robustness. Most NoSQL systems provide
for a document-oriented model with no transactions be-
tween documents. Corfu allows the SDN controller to
be developed with individual objects (rather than doc-
uments) per logical networking element, and supports
transactions to update multiple objects atomically. This
is all done while retaining the desired properties of a
highly-available, replicated, scale-out storage system.

Since Corfu has snapshot read semantics, that means
when reading multiple objects, the SDN controller op-
erates on a consistent set of data. Most other data plat-
forms we considered compromise the isolation level in
order to achieve scale, and default to lesser isolation lev-
els such as read committed, which can lead to reading
a mixed-version of multiple objects, even though they
were updated in an atomic transaction. Using snapshot
read semantics in traditional databases is typically not
used because of scale and performance issues.

Programming Model

Corfu exposes plain old Java-based data structures. This
allows the SDN Controller to use direct Java data struc-
tures (e.g., HashMaps) for its logic. Transactions are de-
marcated around access to one or more Java objects. The
entire NSX control plane code-base is now expressed
in a pure Java-only model, as opposed to traditional
databases that require a different language (SQL) and a
different model (relational tables). Our experience so far
indicates that developing control plane applications us-
ing Corfu achieves simple and familiar data structures,
without the object-relational impedance mismatch that
traditional Java-based database applications suffer.

Scale Out

From day one, it was clear that scaling was a paramount
requisite of the NSX control plane, hence data tools like
ZooKeeper or etcd cannot satisfy this requirement. As
the size of the logical network topology grows, so does
the computation requirements when determining what
information is needed to be sent to each hypervisor in
order to forward network packets. Typically, as VMs
(Virtual Machines) change state (e.g, power on, move

80



Figure 3: rLucene: An in-memory index over Corfu

to different hypervisors), the SDN controller is consulted
with an updated set of forwarding configuration. In some
cases (e.g., security), these VM state changes will block
network VM traffic until the controller is consulted for
up-to-date forwarding information. As the scale and
computation complexity goes up, the latency can also in-
crease. To combat this, the set of controllers is scaled
out so that no single controller becomes a bottleneck and
latency is minimized.

Corfu is designed to meet these scaling needs through
virtualization of the object space into separable materi-
alized streams [13]; by striping the history of updates
across a cluster [5]; and through the single-copy concur-
rent runtime described here.

4 rLucene

rLucene is an in-memory object store with deep indexing
for fast data retrieval. It is a fault-tolerant, highly avail-
able and fully replicated client store built on top of Corfu.
Deep indexing of object data fields helps significantly in
fast and flexible querying of stored objects.

rLucene is powered by the Lucene [1] search engine
at the core. rLucene provides Java Map interface to ab-
stract low level Lucene indexing and search APIs. Work-
ing with rLucene is as simple as Java Hashmap. Opera-
tions like values(), keySet() and entrySet() of the
Java map interface are overloaded to accept queries for
retrieving subsets of objects stored. rLucene map query-
ing is blazing fast, as result-set objects are lazy-loaded.
On iteration of result-set, real cost of retrieving fully pop-
ulated objects is incurred.

Using Corfu for a clustering and persistence solution,
rLucene provides applications the ability to store and re-

trieve objects from an in-memory indexed map, finely
tuned for fast data retrieval. The objects are persisted in
the Corfu log and are ephemeral on the client-side. It is
a perfect use-case of Corfu; it opens a world of possi-
bilities for application builders, bringing the full-fledged
capabilities of Lucene indexing and search straight into
the Corfu application. In rLucene, as the name suggests,
the Corfu log entries are applied in sequence order to
all application instances. Hence, the index is replicated
because every engine instance applies the log from the
beginning in the same sequence order. The strong con-
sistency guarantees from Corfu provide read-after-write
semantics. Transforming the Lucene library into a Corfu
object is a great demonstration of the utility Corfu brings
in convenience and expression for applications with so-
phisticated logic.

To understand the implementation, we will describe
a put(). When an application put()s an entry, it does
not get inserted into the in-memory map, but rather to the
Corfu log. In this way, the entry is persisted to, and repli-
cated by, Corfu. Recall that Corfu in-memory objects are
“lazy”, they are sync’ed with the log only when needed.
In rLucene, the object is put into the in-memory Lucene
engine and indexed only when a get() access is invoked
on the map. Other map API methods like putAll(), putI-
fAbsent(), and so on, operate in a similar manner.

Access operations on an rLucene map are made sure
to happen only after generation and visibility of new in-
dex changes. This is done to ensure read after write se-
mantics. For this, rLucene leverages Lucenes near-real
time search functionality. To make index changes visi-
ble, flipping of searcher is done in read path rather than
on after every object mutation. This significantly reduces
ingestion cost. To further reduce penalty on first read

81



operation after a change happens, a background thread
regularly makes new index changes visible.

Additionally, an rLucene map has built-in support for
sorting and pagination. It supports cursor-based and
offset-based pagination. It is thread-safe and lock con-
tention is kept at minimal to achieve high throughput in
multi access scenarios.

Last, but not least, application builders can wrap
blocks of operations as transactions. This provides multi-
threaded applications with lock-free concurrent transac-
tions. These lock-free transactions allow applications
to express complex cross-index logic, such as “if key
K exists in one map, insert K′ to another map,” while
guaranteeing atomicity and isolation from other transac-
tions. This is where the single-copy feature of Corfu has
been crucial: Each transaction has its own Concurrent-
Versioned-Object (CVO) snapshot of the Lucene map,
with strict consistent snapshot guarantees, and without
incurring the cost of cloning the entire map.

Figure 3 summarizes the rLucene architecture and fea-
tures. As of this writing, rLucene is production ready,
and its integration with the NSX management plane has
begun.

Acknowledgement

This work would not be possible without the faith of the
entire management chain and the trust they put in us to
build a new data technology that drives the SDN control
plane. In particular, on the NSX side, we are grateful to
Rajneesh Bajpai, Ragnar Edholm, Jeff Jennings, Umesh
Mahajan , Robert Tremblay; and to David Tennenhouse
on the VMware Research side.

References

[1] Apache lucene. https://en.wikipedia.org/

wiki/Apache_Lucene.

[2] Kafka. http://kafka.apache.org/.

[3] Lambda architecture. https://en.wikipedia.

org/wiki/Lambda_architecture.

[4] 10GEN. MongoDB. http://www.10gen.com/

white-papers, 2011.

[5] BALAKRISHNAN, M., MALKHI, D., DAVIS,
J. D., PRABHAKARAN, V., WEI, M., AND WOB-
BER, T. Corfu: A distributed shared log. ACM
Trans. Comput. Syst. 31, 4 (Dec. 2013), 10:1–
10:24.

[6] BERNSTEIN, P. A., HADZILACOS, V., AND
GOODMAN, N. Concurrency Control and Recov-
ery in Database Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1987.

[7] DIACONU, C., FREEDMAN, C., ISMERT, E.,
LARSON, P.-A., MITTAL, P., STONECIPHER, R.,
VERMA, N., AND ZWILLING, M. Hekaton: Sql
server’s memory-optimized oltp engine. In Pro-
ceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (New York,
NY, USA, 2013), SIGMOD ’13, ACM, pp. 1243–
1254.

[8] KOPONEN, T., CASADO, M., GUDE, N., STRI-
BLING, J., POUTIEVSKI, L., ZHU, M., RA-
MANATHAN, R., IWATA, Y., INOUE, H., HAMA,
T., AND SHENKER, S. Onix: A distributed con-
trol platform for large-scale production networks.
In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2010), OSDI’10, USENIX
Association, pp. 351–364.

[9] LAKSHMAN, A., AND MALIK, P. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44 (April 2010), 35–40.

[10] LARSON, P.-A., BLANAS, S., DIACONU, C.,
FREEDMAN, C., PATEL, J. M., AND ZWILLING,
M. High-performance concurrency control mech-
anisms for main-memory databases. Proc. VLDB
Endow. 5, 4 (Dec. 2011), 298–309.

[11] LOMET, D. B. Key range locking strategies for im-
proved concurrency. In Proceedings of the 19th In-
ternational Conference on Very Large Data Bases
(San Francisco, CA, USA, 1993), VLDB ’93, Mor-
gan Kaufmann Publishers Inc., pp. 655–664.

[12] TAI, A., WEI, M., FREEDMAN, M. J., ABRA-
HAM, I., AND MALKHI, D. Replex: A scalable,
highly available multi-index data store. In Proceed-
ings of the 2016 USENIX Conference on Usenix
Annual Technical Conference (Berkeley, CA, USA,
2016), USENIX ATC ’16, USENIX Association,
pp. 337–350.

[13] WEI, M., TAI, A., ROSSBACH, C., ABRAHAM,
I., MUNSHED, M., DHAWAN, M., STABILE, J.,
WIEDER, U., FRITCHIE, S. L., SWANSON, S.,
FREEDMAN, M., AND MALKHI, D. vCorfu: A
cloud-scale object store on a shared log. In NSDI
(2017).

82

https://en.wikipedia.org/wiki/Apache_Lucene
https://en.wikipedia.org/wiki/Apache_Lucene
http://kafka.apache.org/
https://en.wikipedia.org/wiki/Lambda_architecture
https://en.wikipedia.org/wiki/Lambda_architecture
http://www.10gen.com/white-papers
http://www.10gen.com/white-papers



