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Light-Weight Leases
for Storage-Centric Coordination

Gregory Chockler1,3 and Dahlia Malkhi2

Reaching agreement among processes sharing read/write memory is possible
only in the presence of an eventual unique leader. A leader that fails must be
recoverable, but on the other hand, a live and well-performing leader should
never be decrowned. This paper presents the first leader algorithm in shared
memory environments that guarantees an eventual leader following global sta-
bilization time. The construction is built using light-weight lease and renew
primitives. The implementation is simple, yet efficient. It is uniform, in the
sense that the number of potentially contending processes for leadership is
not a priori known.
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1. INTRODUCTION

An attractive way to model a distributed system in which clients access
information on remote servers is a shared memory system, in which pro-
cesses interact through access to shared persistent objects. A quintessential
building block for coordination in such settings is distributed agreement.
However, in order to allow wait-free agreement to be solved, it is known
that the environment must support an eventually unique leader.(30) Intui-
tively, this requisite enables a unique leader to be established and enforce
a decision. In this paper we focus on the problem of implementing such

1IBM Haifa Labs, Haifa University Campus, Mount Carmel, Haifa 31905, Israel. E-mail:
Chockler@il.ibm.com

2School of Computer Science and Engineering, The Hebrew University of Jerusalem, and
Microsoft Research, Silicon Valley. E-mail: dalia@cs.huji.ac.il.

3To whom correspondence should be addressed.

143

0885-7458/06/0400-0143/0 © 2006 Springer Science+Business Media, Inc.



144 Chockler and Malkhi

eventually safe leader election from the bare shared memory environment,
under an eventual synchrony assumption.

Our approach introduces as a building block the abstraction of an
eventual lease. Informally, a lease is a shared object that supports a con-
tend operation, such that when contend returns ‘true’ at any process, it
does not return ‘true’ to any other process for a pre-designated period.
The lease automatically expires after the designated time period. In addi-
tion, our lease supports a renew operation which allows a non-faulty
leader to remain in leadership (indefinitely).
Leases and Mutual Exclusion. A lease is substantially different from a
mutual-exclusion object, and hence is not solved by the vast literature
on mutual exclusion. By its very nature, it becomes possible for other
processes to recover an acquired lease regardless of the actions of the
others, including the case that the process that held the lease has failed.
Additionally, a lease may not be safe for an arbitrarily long period.
Indeed, in an eventual (or intermittently) synchronous settings, any lease’s
pre-designated exclusion period entails no safety guarantee during periods
of asynchrony. However, when the system stabilizes, all previous (possibly
simultaneous) leases expire, and safety is recovered by the very nature of
leases. Thus, despite any transient periods of instability, leases guarantee
that once a system becomes synchronous for sufficiently long, it will be
possible for processes to acquire exclusive leases. Renewals also provide
automatic recovery: Only one renewal emerges successfuly after system sta-
bilization, despite any unstable past periods, and despite the possibile exis-
tence of multiple simultaneous lease holders before the stability.
The Model. This paper provides the first implementation of leases from regu-
lar shared mutli-reader/multi-writer read/write registers.(13) The model of syn-
chrony we employ, called the Eventual Known Delay Timed (�ND) model,
is an extension of the timed-asynchronous communication model of (17) to
shared memory systems. In addition to arbitrarily long period of asynchrony,
the model admits the following types of faults. First, by the very definition
of leases, any acquired lease is recoverable, even if the process that holds it
becomes slow or crashed. Second, we may employ standard constructions
of a reliable regular register from a collection of fail-prone shared objects
(see e.g., Ref. 13). In this way, leases can be constructed from a set of shared
objects exhibiting non-responsive memory faults of up to a minority.
Uniformity. It is known that supporting mutual exclusion with read/write
registers incurs a cost that is linear in the maximum potential number of
participating processes, in terms of both the memory consumption and
the number of shared memory accesses.(12) Indeed, many similar abstrac-
tions such as failure detectors, or the � leader oracle of Ref. (16) are
defined for a group of known members. To circumvent this limitation,
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we adopt a timing-based locking approach that was originally suggested
by Fischer.(26) This results in a very simple locking protocol, that uses
a single read/write register to support exclusion among a priori unknown
(but eventually finite) number of client processes.

We enhance Fischer’s scheme with a number of important modifica-
tions. First, in order to support automatic recovery of the locks held by
failed processes, we augment the scheme with an expiration mechanism
so that a lock is leased to a process for a pre-defined time period. Once
the lease period expires, the lock is relinquished and subsequently, can
be granted to another process. (In the following, we will use terms locks
and leases interchangeably). Another important extension we present is the
support for automatic lease renewal. This leads to efficient utilization of
the lease by a leader who holds the lease and continues doing useful work.
Reaching Coordination. The common approach for reaching consensus
among multiple servers in such tasks is to employ the Paxos paradigm.(27)

This paradigm preserves uniqueness of decisions through a three phase commit
protocol, and relies on timeliness conditions for progress. Our leases serve as
a fundamental enabler of the Paxos paradigm in storage-centric systems, and
a necessary building block for the agreement algorithms in Refs 14, 19. Our
leases guarantee exclusion to clients once the system stabilizes (and remains
stable for long enough), regardless of any past timing violations. This allows
our lease to support an eventual leader-election primitive, a necessary building
block for implementing dependable services resilient to timing failures.

We show a simple lease based solution for fault-tolerant consensus
that guarantees agreement at all times but can fail to make progress
when the system is unstable. The latter can be used to realize efficient,
always safe fault-tolerant locking using a hierarchical approach described
by Lampson in Ref. 28.
Contribution. Our work provides the following formal contribution.
It gives a specification of leases, including a renewal operation. It pro-
vides an efficient way to implement leases for an unbounded number of
unreliable client processes. The solution applies ideas originally developed
for mutual exclusion in synchronous shared memory to derive light-weight
lease primitives for highly decentralized and unreliable distributed settings.
Finally, we show a simple lease based solution for fault-tolerant Consen-
sus which is a benchmark distributed coordination problem.

2. RELATED WORK

2.1. Time Based Mutual Exclusion

Algorithms for mutual exclusion in the presence of failures must be
based on timeliness assumptions, as they have to be able to attain progress
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in spite of process failures while executing in their critical section. There
are two commonly used timing assumptions in this context: The known
delay model of Refs 3–5 and the unknown delay model of Ref. 2.

The known delay model was first formally defined in Ref. 4. The first
mutual exclusion algorithm explicitly based on the known delay assump-
tion was the famous Fischer algorithm, which was first mentioned by
Lamport in Ref. 26. In Ref. 26, another timing based algorithm is pre-
sented. This algorithm assumes a known upper bound on time a process
may spend in the critical section.

Alur et al. consider in Ref. 2 the unknown delay model: The time
it takes for a process to make a step is bounded but unknown to the
processes. The paper presents algorithms for mutual exclusion and Con-
sensus in this model. A remarkable feature of these algorithms is their
ability to preserve safety even in completely asynchronous runs. However,
they are guaranteed to satisfy progress only if the system behaves syn-
chronously throughout the entire run. The mutual exclusion algorithm of
Ref. 32 combines the ideas of Fischer and Lamport’s fast mutual exclusion
algorithm(26) to derive a timing based algorithm that guarantees progress
when the system stabilizes while being safe at all times. However, the algo-
rithm of Ref. 32 is not fault-tolerant.

As far as we know the eventual known delay timed (�ND) model
introduced in this paper was never considered in the shared mem-
ory context. Most of the existing time based algorithms are either not
fault-tolerant,(4,5) or resilient only to the timing failures.(2,32) The fault-
tolerant (wait-free) timing based algorithms of Ref. 3 are not suitable for
the �ND model as they might violate safety and/or liveness even during
synchronous periods if the delay constraints do not hold right from the
beginning of the run.

The �ND model considered in this paper is an extension of a stan-
dard asynchronous shared memory model to include timeliness assumptions
based on the absolute real-time. To this end, the �ND model postulates the
existence of bounded drift local hardware clocks accessible to each process.
In this respect, the �ND model closely resembles the timed asynchronous
model of Cristian and Fetzer defined in Ref. 17. An alternative approach to
model timeliness in shared memory environments is to postulate the exis-
tence of a known upper bound on relative process speeds as it is done by
Lynch and Shavit in Ref. 32. This results in a model analogous to the partial
synchrony model of Ref. 18. However, as is, the partial synchrony model of
Ref. 32 is inappropriate for our purposes as it does not distinguish between
local process steps and those involving a shared memory access. This dis-
tinction is important if non-atomic shared objects (such as regular regis-
ters) are assumed. Relaxing the partial synchrony model of Ref. 32 to allow
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non-atomic memory access as well as evaluating applicability of other timed
models (e.g., Ref. 1, or the timed I/O automata model of Ref. 25) remains a
subject of the future work.

Other properties that are of interest to us is the ability of timing
based algorithms to support exclusion among arbitrarily many client pro-
cesses and to work with weaker registers and/or a small number thereof.
The latter is particularly important in failure prone environments as in
these environments the registers must be first emulated out of possibly
faulty components. In this respect the original solution by Fischer is
superior to all the other algorithms as it is based on a single multi-
writer multi-reader register. In fact, as we show in this paper, the register
is only required to support regular semantics (in the sense of Ref. 13),
and hence may be emulated efficiently even in a message passing set-
ting. This solutions was therefore chosen as a basis for our lease imple-
mentation. The algorithms of Refs 32 and 4 are also oblivious to the
number of participants and use two and three shared atomic registers,
respectively.

The goodness of timing based mutual exclusion algorithms are fre-
quently assessed in terms of their performance in contention free runs. In
particular, a good algorithm is expected to avoid delay statements when
there are no contention. The performance of the timing based algorithms
under various levels of contention is analyzed in Ref. 20. The paper exam-
ines (both analytically and in simulations) the expected throughput of
timed based mutual exclusion algorithms under various statistical assump-
tions on the arrival rate and the service time. The question of further
optimizing our leases approach for contention free runs is left for future
research.

2.2. Other Work on Locks and Leases

Gray and Cheriton were the first to employ leases in Ref. 23 for con-
structing fault-tolerant distributed systems. Lampson advocates in Ref. 28,
29 the use of leases to improve the Paxos algorithm. Boichat et al.(10)

introduce asynchronous leases as an optimization to the atomic broadcast
algorithms based on the rotating coordinator paradigm. Chockler et al.(15)

show a randomized backoff based algorithm for implementing leases in
a setting similar to the �ND model of this paper. However, the algo-
rithm of Ref. 15 guarantees progress only probabilistically, and relies on
shared objects that can measure the passage of time. Finally, Cristian and
Fetzer(17) show an implementation of leases in timed asynchronous
message passing systems.
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2.3. Locking Support in SAN-based File Systems

Our work is of independent practical importance in storage area net-
work (SAN)-based file systems. In recent years, advances in hardware tech-
nology have made possible a new approach for storage sharing, in which
clients access disks directly over a high-speed network. By allowing the
data to be transferred directly from network attached disks to clients, SAN
has the potential to improve scalability (through eliminating the file server
bottleneck) and performance (through shorter data paths). However, with-
out properly restricting concurrent access to shared data by clients, shared
data would be rendered inconsistent. Therefore, a scalable and efficient
locking support is widely recognized as a key requisite for realizing the
SAN technology’s full potential.

Traditionally, SAN-based file systems rely on separate servers to
maintain their meta-data and coordinate access to the user data on storage
devices.(11,33) The meta-data servers can be replicated for better availability
and load balancing. The server replicas are kept in a consistent state using
a group-communication substrate. However, the cluster of replicated meta-
data servers still remains the performance and availability hotspot as all
the file-system operations (even those targeted to different objects) must
consult the meta-data servers before accessing the storage. Examples of
the systems whose design follows this approach include the IBM General
Parallel File System (GPFS)(38) and IBM StorageTank.(33) More examples
can be found in Ref. 22.

The vision of a storage-centric locking was first realized in the Global File
System (GFS) project(35,39,40) developed in the University of Minnesota. In
GFS, the cluster nodes physically share storage devices connected via a high-
speed network. GFS utilizes fine grain test-and-set locks provided by special-
ized SCSI devices(9,36) to implement atomic execution of file system operations.

Amiri et al.(6) proposes base storage transactions (BSTs) as a core
paradigm for maintaining low-level integrity of striped storage (such as
RAID) in the face of concurrent client accesses. In particular, the paper
discusses device-served locking as an alternative to traditional centralized
locking schemes. It demonstrates through an extensive empirical perfor-
mance study that device-served locking provides better performance under
high contention, and is therefore, more scalable.

zFS(22,37) is a research file system implemented over object store
devices(34) directly accessible over a SAN. In zFS, each storage device
maintains a coarse grain lock which can be used by a lease manager to
obtain an exclusive access (a major lease) to the entire device. The lease
manager is then responsible for administering fine grain locks to clients
requesting access to individual data items stored on the device.
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The symmetrical locking mechanisms above all guarantee availability
of lock information in face of process failures. However, none of these
systems support data and lock replication and therefore, do not guaran-
tee availability in the face of storage device failures. As a partial solution,
a reliability hardware (such as RAID) may be employed in these systems
to mask the storage failures to some extent. In addition, both GFS and
zFS require sophisticated storage hardware which must be able to support
read–modify–write instructions and, in the case of zFS, also be capable of
measuring real time passages.

An alternative approach, put forth in this paper, is to employ a
storage-centric locking, i.e., to co-locate locks with the very data items that
are protected by these locks. This way, the cost of locking is folded into
the cost of accessing the data itself, and the locks availability is the same
as that of the data itself. The challenge is in providing an efficient and
fault-tolerant implementation.

A naive per-datum lock design would associate a strong object that
directly implements locking (such as test-and-set) with each data item.
However, this approach has several drawbacks: First, it necessitates a
sophisticated support on behalf of the storage hardware such as SCSI
controllers enhanced with device locks (see Refs 9, 36), or object store
controllers (see Refs 22, 37). These hardware enhancements still remain
proprietary and it is unclear whether they will be accepted by the storage
manufacturers in the future.

Second, data is frequently replicated on several storage units (e.g., a
file may be striped, or mirrored) for availability and fault-tolerance. As a
result, it is desirable to have the locks replicated as well so that the same
level of availability is preserved. Unfortunately, as it was proved in Ref. 24,
it is impossible to use a collection of fail-prone strong objects (such as
test-and-set, compare-and-swap, etc.) to implement a reliable one.

We therefore opt for an alternative approach which is to build locks
from weaker objects, i.e., read/write registers. Thus, deployment becomes
a non-issue, as designating a read/write word per file or per block on a
disk is trivially done. In case that multi disk locking is required, a single
reliable read/write register is implementable using a farm of failure-prone
storage units (see, e.g., Refs 7, 8, 13).

3. SYSTEM MODEL

We will start by defining a basic asynchronous shared memory model
and the regular register properties (Section 3.1). We will follow the basic
formalism of Ref. 13. Then, in Section 3.3, we augment the basic model
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with necessary timeliness assumptions by adapting the timed asynchronous
model of Ref. 17 to the shared memory environment.

3.1. The Basic Model

Our basic model is an asynchronous shared memory model consisting
of finite but a priori unknown universe of processes p1, p2, . . . communi-
cating by means of a finite collection of shared objects, O1, . . . , On. Every
shared object has a sequential specification defining the object behav-
ior when accessed sequentially. A sequence of operations on a shared
object is legal if it belongs to the sequential specification of the shared
object. In this paper, we reduce our attention to read/write shared objects.
A sequence of operations on a read/write shared object is legal if each
read operation returns the value written by the most recent write opera-
tion if such exists, or an initial value otherwise.

The operations on objects have non-zero duration, commencing with
an invocation and ending with a response. An execution of an object is a
sequence of possibly interleaving invocations and responses. For an exe-
cution σ and a process pi , we denote by σ |i the subsequence of σ con-
taining invocations and responses performed by pi . Processes may fail by
crashing. A process is called correct in an execution σ if it never crashes
throughout σ . Otherwise, a process is called faulty in σ . A threshold t

of the objects may suffer non-responsive crash failures,(24) i.e., may stop
responding to incoming invocations.

An execution σ is admissible if the following is satisfied: (1) Every
invocation by a correct process in σ has a matching response; and
(2) For each process pi , σ |i consists of alternating invocations and match-
ing responses beginning with an invocation. In the rest of this paper, only
admissible executions will be considered.

Given an execution σ , we denote by ops(σ ) (resp. write(σ )) the set of
all operations (resp. all write operations) in σ ; and for a read operation r

in σ , we denote by writes←r the set of all write operations w in σ such
that w begins before r ends in σ . The operations in ops(σ ) are partially
ordered by a →σ relation satisfying o1 →σ o2 iff o1 ends before o2 begins
in σ . In the following, we will often omit the execution subscript from →
if it is clear from the context.

Our definition of regularity for a multi-reader/multi-writer read/write
shared object is similar to the MWR2 condition of Ref. 13. It is as follows:

Definition 1 (Regularity). An execution σ satisfies regularity if there
exists a permutation π of all the operations in ops(σ ) such that for any
read operation r, the projection πr of π onto writes←r ∪ {r} satisfies:
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1. πr is a legal sequence.
2. πr is consistent with the → relation on ops(σ ).

A read/write shared object is regular if all its executions satisfy
regularity.

3.2. Masking Object Failures

Given a collection of n > 2t shared objects up to t of which can suf-
fer from non-responsive crash failures, it is possible to construct a wait-
free regular register defined in the previous section (see e.g., Refs 8, 13).
The resulting reliable registers can then be used to construct higher level
services. Hence, in this paper we will follow a modular approach: i.e., we
will assume that reliable registers are available, and develop algorithms in
a shared memory model with reliable registers.

3.3. The Augmented Model

In the augmented model, each process is assumed to have access to a
hardware clock with some predetermined granularity. We also assume that
each process can suspend itself by executing a delay statement. Thus, a call
to delay(t) will cause the caller to suspend its execution for t consecutive
time units. We model the system behavior as a General Timed Automaton
(GTA)(31) which is a state machine augmented with special time-passage
events ν(t), t ∈ R. The time-passage event ν(t) denotes the passage of real
time by the amount t .

The system is called stable over a time interval [s, t ], called a stabil-
ity period, if the following holds during [s, t ]: (1) The processes’ clock drift
with respect to the real-time is bounded by a known constant ρ. For sim-
plicity we assume that ρ = 0 (it is easy to extend our results to clocks
with ρ �= 0); and (2) The time it takes for a correct process to complete its
access to a shared memory object, i.e., to invoke an operation and receive
a reply, is strictly less than a known bound δ.

In the following, we will be interested mainly in properties exhibited
by the system during stability periods. To simplify the presentation, we
will consider a timed model, which we call an Eventually Known Delay
Timed model, or �ND, with stability periods of infinite duration: i.e., we
assume that for each run there exists a global stabilization time (GST) such
that the system is stable forever after GST (i.e., during [GST,∞)). In the
remainder of the presentation, all properties and correctness proofs regard
operations as starting after GST.
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We will also consider a special case of the �ND model, which we call
a Known Delay Timed model, or ND, that requires each run to be stable
right from the outset.

4. THE LEASE SPECIFICATION WITHOUT RENEWALS

We define the �-Lease object as a shared memory object that can be
concurrently accessed by any number of processes, and whose interface for
each process i consists of a single operation contendi . The response to
the contend operation is acki . We assume that the interaction between
each process i and the lease object is well-formed in the sense that it is
consistent with the state diagram depicted in Fig. 1.

A process that is not holding a lease is in the state Free. We assume
that each process execution always starts from the Free state. A process
that attempts to acquire the lease, invokes contend and moves to the state
Try. Once contend returns, the process moves to the state Hold assum-
ing the lease for the next � time units. Once the lease expires, the process
moves back to the Free state.

In the states Free and Hold, the process executes the code specified
by the application program. We do not put any restrictions on the time
spent in the Free state (indicated by t � 0 time passage).

Fig. 1. Well-formed interaction of process i and the �-Lease object.
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A �-Lease object is required to satisfy the following property after
time t � GST :

Property 1. At any point in an execution, the following holds:

1. Safety: At most one process is in the Hold state.
2. Contend Progress: If no process is in the Hold state, and some cor-

rect process is in the Try state, then at some later point some cor-
rect process enters the Hold state.

5. THE LEASE IMPLEMENTATION

The �-Lease object implementation appears in Fig. 2. It utilizes a
single shared multi-reader multi-writer regular register x. A process that
tries to acquire the lease writes a unique timestamp to the register x and
delays for 2δ time. If upon the delay expiration, the process reads its own
value back, then it acquires the lease and enters the Hold state. Otherwise,
it backs off to the loop in lines 3–7, where it waits until the lease period
� expires. Note that each process has to write a unique timestamp (e.g.,
id and a sequence number) into x. This is necessary in order to prevent a
process that acquires the lease for several times in a row from being falsely
suspected by other processes.

We now prove that the implementation in Fig. 2 satisfies the �-Lease
object properties.

Throughout the proof, we make use of the following assumptions and
notations. Let L be a contend operation. We denote the sequence of
read/write operations by which L terminates by:

L.r ′, (delay �+ 5δ), L.r ′′, L.w, (delay 2δ), L.r.

That is, denote by L.w the last write operation invoked during L (i.e., the
last time line 9 in Fig. 2 is activated). Denote by L.r the read operation
that follows L.w (on line 11), and by L.r ′′ the one immediately preceding
L.w. Let L.r ′ be the last read operation during L from line 1 or line 11
that precedes L.w.

Finally, for the execution considered in all proofs, let π be a seriali-
zation of the operations that upholds the regularity of x.

Lemma 1. Let L0 be a contend operation invoked by process p that
returns at time t0. Denote s0 = t0+� the expiration time of L0. Then for
all contend operations L such that L.w appears in π after L0.w, L.r ′′ is
invoked after s0 + δ.
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Fig. 2. The �-Lease Implementation.

Proof. Assume to the contrary, and let L be a contend operation
such that L.w is the first write in π that breaks the conditions of the
lemma.

Clearly, L.w does not precede L0.r in πL0.r , for else L0.r cannot
return the value written by L0.w. Furthermore, since all write operations
w such that w → L0.r must appear in πL0.r before L0.r, and because by
assumption L0.w precedes L.w in π , L.w �→ L0.r. Putting this together
with the fact that the response of L0.w and the start of L0.r are separated
by a 2δ delay, we have L0.w→ L.r ′′ (see Fig. 3(a)). Hence, L0.w ∈ πL.r ′′ .

Next, we show that L0.w is the last write preceding L.r ′′ in πL.r ′′ .
Let L′ �= L be a contend operation such that L′.w is between L0.w

and L.r ′′ in πL.r ′′ . By assumption, L′.r ′′ must be invoked after s0 + δ.
Since, by definition of πL.r ′′ , L′.w must be invoked before L.r ′′ returns,
L.r ′′ returns after s0 + δ, as depicted in Fig. 3(b). Since L′.w is invoked
after s0+δ, and since by assumption, L.r ′ finishes before s0+δ, we get that
L.r ′ → L′.w. Putting this together with the assumption that L′.w precedes
L.r ′′ in πL.r ′′ , we obtain that L.r ′ and L.r ′′ will return different values in
which case the lease implementation implies that the write statement is not
reached. Hence, L.w could not have been invoked. Thus, L0.w is the last
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write preceding L.r ′′ in πL.r ′′ implying that L.r ′′ returns the value written
by L0.w.

By construction, L.r ′′ is preceded by a 5δ + � delay preceded by
another read operation L.r ′ such that the timestamp values returned by
these two read’s are identical. However, it is easy to see that L0.w is
contained in full between these two reads. Indeed, we already know that
L0.w → L.r ′′. We now show that L.r ′ → L0.w. Indeed, the earliest time
that L0.w can be invoked is s0 − � − 4δ. Since by assumption L.r ′′ is
invoked before s0+δ, L.r ′ returns before s0+δ−(�+5δ) = s0−�−4δ (see
Fig. 3(b)). Therefore, L.r ′ → L0.w. Thus, regularity of x and the time-
stamp uniqueness imply that L.r ′ and L.r ′′ return different timestamps in
which case the lease implementation implies that the write statement is not
reached. Hence, L.w could not have been invoked. A contradiction.
We are now ready to prove Safety.

Lemma 2 (Safety). The implementation in Fig. 2 satisfies Prop-
erty 1.1.

Proof. Let L be a contend operation by process p that returns at
time t . Denote s = t +�. Suppose to the contrary that another contend
operation L′ returns at time t ′ within the interval [t, s].

First, L′.r ′′ must be invoked before s+ δ. By Lemma 1, putting L0 =
L we get that L.w does not precede L′.w in π . Second, L.r ′′ must be
invoked before t ′, and a fortiori, before t ′ + � + δ. Applying Lemma 1

Fig. 3. Possible placements of overlapping contend operations L0 and L.
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again, with L0 = L′, we get that L.w′ does not precede L.w in π . A con-
tradiction.
We now turn our attention to proving Progress. We first prove the follow-
ing technical fact.

Lemma 3. Let q be a process that performs an operation w1 = write
that returns at time t . If no process returns from a contend operation
after t , then for each s > t , the interval [s, s + 5δ] contains a complete
write invocation (i.e., from its invocation to its response).

Proof. Suppose to the contrary. By assumption, no write operation is
invoked between s and s + 4δ. Let W be the last write invoked before s,
or possibly the set of concurrent, latest writes invoked before s. Formally,
W is the set of all w such that (1) w is invoked before s; and (2) for any
write w′ invoked by s + 4δ, w �→ w′. W is not empty because w1 starts
before s, and no write is invoked in the interval [s, s + 4δ].

Let w ∈ W , and let r = read be the corresponding read operation,
invoked by the same process 2δ after w. We claim that (i) W → r, and
(ii) there does not exist any write event ω in πr that follows W in π such
that W → ω and ω is invoked before r returns.

To see that (i) holds, let w′ ∈ W . Since w �→ w′, we have that w′ ter-
minates at most δ after w; since r starts 2δ after w’s termination, w′ →
r. To see (ii), first note that if W → ω, then by definition ω cannot be
invoked before s. Second, by assumption, no write is invoked between s

and s+4δ, but r terminates by s+4δ at the latest. So ω cannot be invoked
before r returns, and hence is not in πr .

Hence, by the regularity of x, all Read’s corresponding to write’s in
W must return the value of the last write in π from W . The read corre-
sponding to this write then sees x unchanged, and its initiator is allowed
to obtain the lease. A contradiction.

Lemma 4 (Progress). The implementation in Fig. 2 satisfies Prop-
erty 1.2.

Proof. Suppose that no process is holding the lease at time t . Let p

be a correct process that is still contending at t . Suppose for contradiction
that no contend operation returns after t .

First, eventually some process, say q1, invokes an operation w1 =
write. This is due to the fact that the wait-loop at the start of the contend
algorithm (lines 2.3–7) terminates at some process when no write’s are
performed.
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By Lemma 3, if there is no successful contend after w1 returns, then
every instance of the loop by q1 observes at least one new written value.
Thus, the test in line 7 2 remains false. Hence, q1 does not perform any
further write’s. Let an operation w2 = write by q2 be observed by q1.
Again, so long as there is no successful contend, by Lemma 3, q2 per-
forms no further write’s. And so on.

Since the number of processes is finite, eventually all processes are in
their wait loop and no process writes. This is a contradiction.
Hence, we proved the following:

Theorem 1. The implementation in Fig. 2 satisfies Property 1.

6. LEASE RENEWALS

In many situations, it is important to enable the current lease holder
to renew its lease without contention. For example, this is the case when a
lease holder requires more time to complete an operation than the alloted
period. Another example is the use of leases to obtain a leader, in which
case we wish the leader to perpetuate so long as it is alive.

In this and the following section, we consider lease renewals. We start
by extending the lease specification in Section 4 to include lease renewals.

The �-Lease object with renewals supports for each process i, an
additional renewi operation whose response is either truei or f alsei . The
extended well-formedness condition is given by the state diagram depicted
in Fig. 4. It introduces the Renew state where the renew implementation
code is executed, and the Exit state where an application can attempt
lease renewal by calling the renew operation. If the call to renew returns
true, the process assumes the lease for another � time units. Otherwise,
it returns to the state Free. Note that we assume that the transition from
state Exit to the Renew state is instantaneous (indicated by a 0 time pas-
sage). Note also that a process is allowed to renew its lease for several
times in a row.

In addition to Property 1, a �-Lease object with renewals is required
to satisfy the following properties after time t � GST :

Property 2. At any point in an execution, the following holds:

1. Renewal Safety: If a correct process i is in the Renew state, then
no other process is in the Hold state.

2. Renewal Progress: At any point in an execution, if a correct pro-
cess i is in the Renew state, then at some later point process i

enters the Hold state.
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Fig. 4. Well-formed interaction of process i and the �-Lease object with renewals.

7. IMPLEMENTING RENEWALS

In this section we address the lease renewals implementation. We con-
sider two implementation options: The first one is suitable for the ND
model, and is extremely efficient. The second one works in the �ND
model, and guarantees stabilization of renewal: Only one renewal emerges
successfully after GST, despite any unstable past periods, and despite the
possible existence of multiple simultaneous lease holders before GST. The
�ND renewal protocol is somewhat more costly.

7.1. ND Renewal

The renewal implementation in the ND model is extremely simple:
A process whose previously granted lease expires can renew it for another
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� time units by simply executing lines 8–9 of the �-Lease implementation
in Fig. 2. More precisely, we define the renew operation as follows:

renew:
Generate a unique timestamp ts;
write(x, ts);
return true;

We now prove the correctness of the ND renewal scheme. Since live-
ness trivially holds, we are only left with proving safety.

Lemma 5. Consider a sequence 	 = L0rn1rn2 . . . rnk of lease opera-
tions by process p. Suppose that L0 is a successful contend operation that
returns at time t0, and rni is a successful renew operation that returns at
time ti . Then there exists no contend operation L by process q �= p such
that L.w is invoked within the interval [t0, tk +�+ 2δ].

Proof. By induction on length of 	. For the base case, let 	 = L0rn1.
Suppose to the contrary that there exists a contend operation L such that
L.w is invoked within [t0, t1 +�+ 2δ]. First, note that L0.w→ L.w, and
therefore, L0.w precedes L.w in π . Therefore, by Lemma 1, L.r ′′ must be
invoked after t0 +� + δ. Since rn1.w is invoked at t0 +�, it must return
by t0 + � + δ, and therefore, rn1.w → L.r ′′. Since L.r ′′ is invoked before
t1 + � + 2δ, L.r ′ returns before t1 + � + 2δ − (� + 5δ) = t1 − 3δ. Since
rn1.w must be invoked at t1 − δ the earliest, L.r ′ → rn1.w. Therefore, by
regularity of x and timestamp uniqueness, L.r ′ and L.r ′′ will return differ-
ent values violating the necessary condition for the write statement of the
contend implementation to be reached. Hence, L.w cannot be invoked.
A contradiction.

Assume that the result holds for all sequences 	 of length k − 1, and
consider a sequence 	′ = 	 rnk. Assume to the contrary. By the induc-
tive assumption, L.w must be invoked after t(k−1) + � + 2δ. Therefore,
rnk.w → L.r ′′. On the other hand, L.r ′′ must be invoked before tk +
�+ 2δ. Therefore, L.r ′ must return before tk − 3δ. Since the earliest time
rnk.w can be invoked is tk − δ, L.r ′ → L.w. Therefore, by regularity
of x and timestamp uniqueness, L.r ′ and L.r ′′ will return different values
violating the necessary condition for the write statement of the contend
implementation to be reached. Hence, L.w cannot be invoked. A contra-
diction.

Lemma 6. Suppose that a process p returns from a renew operation
rn at time t . Then, there exists no process q �= p whose renew operation
rn′ returns within the interval [t, t +�].
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Proof. Suppose to the contrary that rn′ returns at time t ′ within the
interval [t, t + �]. By well-formedness, both p and q must have been
invoked contend operations L and L′ in the past to acquire their initial
leases. Suppose that L and L′ return at times c < t and c′ < t ′ respectively.
Assume, w.l.o.g, that c < c′. By Lemma 5, putting t0 = c and tk = t +�,
and because t ′ � t + �, we get that the lease period of L′ overlaps with
[t0, sk]. A contradiction.
The following lemma follows immediately from Lemmas 5 and 6.

Lemma 7 (ND Renewal Safety). The ND renewal implementation
satisfies Properties 1.1 and 2.1.

We proved the following:

Theorem 2 (ND Renewal Correctness). The ND renewal implemen-
tation satisfies Properties 1 and 2.

7.2. �ND Renewal

The renew operation implementation for the �ND model is shown
in Fig. 5. For simplicity, we require that timestamps consist of two fields:
the process id and a monotonically increasing counter.

Throughout the proof of correctness of the �ND renewal scheme, we
make use of the following notation. Let L be a contend or renew oper-
ation. As in the previous section, we denote the sequence of read/write
operations by which L terminates by:

(in contend only: L.r ′, delay�+ 6δ), L.r ′′, L.w, (delay 2δ), L.r.

Fig. 5. �ND Renew Implementation.
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That is, L.w is the last write operation invoked within L, and L.r ′′, L.r

and the read operations immediately preceding and following L.w, respec-
tively. If L is a contend operation, and there exists a read operation
invoked from line 6 of Fig. 2, then L.r ′′ denotes the one immediately pre-
ceding L.w. If L.r ′′ exists, it is immediately preceded by a read operation
L.r ′ from line 1 or line 11 of Fig. 2 followed by a delay of (� + 5δ).
Otherwise, let L.r ′ be the last read operation during L from line 1 or line
11 of Fig. 2 that precedes L.w. then in addition, the read operation pre-
ceding L.r ′′ is denoted L.r ′.

Finally, for the execution considered in all proofs, let π be a seriali-
zation of the operations that upholds the regularity of x.

Lemma 8. Let L0 be a lease operation (contend or renew) invoked
by process p that returns successfully at time t0. Denote s0 = t0 + � the
expiration time of L0. Then there exists no write operation w in π after
L0.w, such that w is invoked before s0 + δ.

Proof. Assume to the contrary, and let L.w be the first write in π

that breaks the lemma.
Clearly, L.w does not precede L0.r in πL0.r , for else L0.r cannot

return the value written by L0.w. Furthermore, since all write operations
w such that w → L0.r must appear in πL0.r before L0.r, and because by
assumption L0.w precedes L.w in π , L.w �→ L0.r. Putting this together
with the fact that the response of L0.w and the start of L0.r are separated
by a 2δ delay, we have L0.w→ L.r ′′ (see Fig. 6). Hence, L0.w ∈ πL.r ′′ .

Furthermore, by assumption L.w is the first write such that (1) L.w

follows L0.w in π ; and (2) L.w is invoked before s0+δ. Since L0.w ∈ πL.r ′′
any write w �= L.w that follows L0.w ∈ πL.r ′′ must be invoked after s0+ δ.
Since, by definition of πL.r ′′ , w must be invoked before L.r ′′ terminates,
L.r ′′ terminates after s0 + δ. Consequently, L.w would be invoked after

Fig. 6. Overlapping renewals.
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s0+δ contradicting the assumption. Since L.w �∈ πL.r ′′ , the only remaining
possibility is that L0.w is the last write in πL.r ′′ , and so L.r ′′ returns the
value of L0.w.

Next, we consider the case that L is a contend operation separately
from the case that it is a renew operation. First, consider that L is a
renew operation. Then the analysis above shows that L.r ′′ returns the
timestamp written in L0.w, hence L is unsuccessful.

Second, assume that L is a contend operation. Here, L.r ′′ is pre-
ceded by a 6δ + � delay preceded by another read operation L.r ′: and
the timestamp values returned by these two read’s are identical. However,
it is easy to see that L0.w is contained in full between these two reads. We
already know that L0.w→ L.r ′′. We now show that L.r ′ → L0.w. Indeed,
the earliest time that L0.w can be invoked is s0−�−4δ. Since by assump-
tion L.w is invoked before s0+δ, L.r ′ is invoked before s0+δ−(�+6δ) =
s0 −� − 5δ. Therefore, L.r ′ → L0.w. Thus, regularity of x and the time-
stamp uniqueness imply that L.r ′ and L.r ′′ return different timestamps in
which case the lease implementation implies that the write statement is not
reached. Hence, L.w could not have been invoked. A contradiction.
We are now ready to prove Safety:

Lemma 9. Assume that a lease operation L (contend or renew) by
process p returns successfully at time t . Let s = t + �. Then there exists
no successful contend or renew operation L′ by a process q �= p that
returns during the interval [t, s].

Proof. Suppose to the contrary that L′ returns successfully at time
t ′ within the interval [t, s]. First, L′.w must be invoked before s + δ. By
Lemma 8, putting L0 = L we get that L.w does not precede L′.w in π .
Second, L.w must be invoked before t ′, and a fortiori, before t ′ + � + δ.
Applying Lemma 8 again, with L0 = L′, we get that L.w′ does not pre-
cede L.w in π . A contradiction.

Lemma 10. Assume that a renew operation L by a process p is
invoked at time t1 and returns successfully at time t2. Then there exists no
successful contend or renew operation L′ by a process q �= p that returns
during the interval [t1, t2].

Proof. Suppose to the contrary that L′ returns at a time t ′ within the
interval [t1, t2]. First, L′.w must be invoked before s + δ. By Lemma 8,
putting L0 = L we get that L′.w must precede L.w in π . Furthermore,
applying Lemma 8 again with L0 = L′, we get that L.w must be invoked
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after t ′ + � + δ. Therefore, L′.w → L.r ′′ so that L′.w ∈ πL.r ′′ , and L′.w
precedes L.r ′′ in πL.r ′′ .

First, suppose that L.w is the first write operation by p in π after
L′.w. Hence, there is no write operation by p in πL.r ′′ following L′.w.
Then by regularity of x, and because L is a renew operation, L.r ′′ returns
a timestamp written by a process q �= p, contradicting to the fact that L

is successful.
Next, suppose that there exists a write operation L′′.w by p in πL.r ′′

that follows L′.w. Since L is a renew operation, L′′ must be the successful
lease (renew or contend) operation immediately preceding L. Applying
Lemma 8 with L0 = L′, we get that L′′.w must be invoked after t ′ +�+ δ

implying that L starts after t ′ +�+ δ (i.e., t1 > t ′ +�+ δ).
We proved the following

Theorem 3 (Renewal Safety). �ND renew implementation satisfies
Properties 1.1 and 2.1.

Finally, we prove Liveness:

Lemma 11. Assume that a correct process p obtains the lease in a
contend or renew operation L at time t . Then, a renew operation rn

invoked by p at s = t +�, returns successfully.

Proof. For rn to be successful, first rn.r ′′ must return the timestamp
written by L.w. This holds by the fact that L.r returns the value of L.w,
and by Lemma 8, since no other write operation that follows L.w in π is
invoked before s +�+ δ.

Second, rn.r needs to return the value written by rn.w. Suppose to
the contrary that some lease operation L′ overwrites rn.w. Let L′.w be the
first write in π by process q �= p that follows L.w and precedes rn.r in
πrn.r .

By Lemma 8, L′.w is invoked after s + δ. Hence, L.w→ L′.r ′′. Since
L.′w is the first write to follow L.w, and since L′.r ′′ → L′.w, we have
that L′.r ′′ returns the timestamp written by p in L.w. By construction,
this occurs only if L′ is a contend (not renew) operation. Still, for L′.w
to be invoked, L′.r ′ and L′.r ′′ must return the same timestamp. We now
show this is impossible.

We already know that L.w→ L′.r ′′. By construction, L′.r ′′ follows a
delay of �+ 6δ after the termination of L′.r ′. If L′.r ′′ is invoked no later
than s + 2δ, then L′.r ′ terminates by s − � − 4δ. Since the earliest that
L.w is invoked is t − 4δ, we have L′.r ′ → L.w. We get that L.w is a write



164 Chockler and Malkhi

that occurs completely between L′.r ′ and L′.r ′′, and so they must return
different timestamps.

We are left with the possibility that L′.r ′′ is invoked after s + 2δ.
Because L′.w precedes rn.r in πrn.r , the latest that L′.r ′′ may be invoked
is s+5δ. Hence, L′.r ′ terminates by s−δ. We now get that rn.w is a write
that occurs completely between L′.r ′ and L′.r ′′, and so they return differ-
ent timestamps.

Hence, L.r ′ and L′.r ′′ must see different values, in contradiction to
the assumption that L′.w is invoked after L′.r ′′. Hence, rn.r returns the
same value as rn.w, and the renewal succeeds.
We proved the following

Theorem 4 (�ND Renewal Correctness). The �ND renewal imple-
mentation satisfies Properties 1 and 2.

8. LEADER ELECTION

In this section we show the lease based implementation of the
Boolean failure detector oracle, denoted L, that is required by the Consen-
sus algorithms of Refs. 14, 19. L is defined as follows: Let Li denote the
local instance of L at a process pi , with a boolean isLeader() operation
returning the current value output by Li . Then, L is required to satisfy the
following property eventually:

Property 3 (Unique Leader). There exists a correct process pi such
that every invocation of Li .isLeader() returns true, and for each process
pj �= pi , every invocation of Lj .isLeader() returns f alse.

The lease based implementation of L appears in Fig. 7. A complete
Consensus algorithm based on L appears in Ref. 14. Here, we include it
in Section 9 for completeness.

The following theorem establishes the correctness of the leader oracle
implementation in the �ND model.

Theorem 5. The pseudocode in Figure 7 eventually satisfies Prop-
erty 3 in the �ND model.

Proof. Let T � GST be the time such that all the leases acquired
before GST have expired and all the faulty processes have crashed by
T . Let LeadersT be the set of processes that are still leaders after T .
If LeadersT �= ∅, then all the processes in LeadersT must be executing
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Fig. 7. The Lease-based Leader Oracle implementation.

lines 6–7 of the code in Fig. 7. By the renewal liveness, some of the pro-
cesses renewing its lease at line 6 at the time t � T will succeed to renew
its lease at each renewal attempted after t . By the renewal safety, starting
from time t on, this process will remain the exclusive lease holder.

If LeadersT = ∅, then by the lease liveness, for some process p

invoking L.contend() after GST , L.contend() will return at time t � T .
By the renewal liveness, p will succeed to renew its lease at each renewal
attempted after t . By the renewal safety, starting from time t on, p will
remain the exclusive lease holder.

9. UNIFORM CONSENSUS BASED ON L
Our Consensus implementation utilizes the ranked register primitive

of Ref. 14 defined as follows: Let Ranks be a totally ordered set of ranks
with a distinguished initial rank r0 such that for each r ∈ Ranks, r >

r0; and Vals be a set of values with a distinguished initial value v0. We
also consider the set of pairs denoted RVals which is Ranks × V als with
selectors rank and value. A ranked register is a multi-reader, multi-writer
shared memory register with two operations: rr-read(r)i by process i,
r ∈ Ranks, whose corresponding response is value(V )i , where V ∈ RVals.
And rr-write(V )i by process i, V ∈ RVals, whose reply is either commiti
or aborti .

Definition 2. We say that a rr-read operation R = rr-read(r2)i sees a
rr-write operation W = rr-write(〈r1, v〉)j if R returns 〈r ′, v′〉 where r ′ � r1.
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The ranked register is required to satisfy the following three properties:

Property 4 (Safety). Every rr-read operation returns a value and rank
that was written in some rr-write invocation. Additionally, let W = rr-write
(〈r1, v〉)i be a rr-write operation that commits, and let R= rr-read(r2)j ,
such that r2 > r1. Then R sees W .

Property 5 (Non-Triviality). If a rr-write operation W invoked with
the rank r1 aborts, then there exists a rr-read (rr-write) operation with rank
r2 > r1 which is invoked before W returns.

Property 6 (Liveness) If an operation (rr-read or rr-write) is invoked
by a non-faulty process, then it eventually returns.

The pseudocode of the Consensus implementation is shown in Fig. 8.
Please refer to Ref. 14 for the correctness proof.

10. PRACTICAL CONSIDERATIONS

There are a number of considerations worthy of noting in the con-
text of practical distributed storage systems. First, a standard concurrency
policy is to allow either multiple simultaneous readers, or one exclusive
writer. Our leases easily support this paradigm. More specifically, in our
scheme, access is granted to contending processes by writing their names
onto a shared read/write register. Therefore, multiple-readers can be sup-
ported simply by having readers use a common name (e.g., “reader”), and
writers use their own identity.

Another important concern is caching. In a scalable system, a client
obtaining a lease on a file may hold the file for some period of time, and
work on a local cached copy of the file. However, the lease for the file
has to be renewed periodically, which in our approach, implies writing to
disk. The obvious concern is that lease-renewal could subvert the benefits
of caching.

We expect this not to be the case for several reasons. First, com-
paring our storage-centric lock-renewal with the standard lease-manager
approach, it is disputable that writing to a disk over a modern SAN is less
efficient than sending a message to the lease manager. First, an advanced
storage controller (like IBM’s Shark or Total Storage Volume Control-
ler(21)) provides a sophisticated caching which is also fault-tolerant. So
writing to a disk can be as fast as writing to a process. Moreover, mea-
surements performed in Ref. 6 indicate that in scalable settings, the costs
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Fig. 8. Consensus using a ranked register and L.

of accessing a remote disk are significantly outweighed by the overhead
of going through a bottleneck lease manager. Further assessing the cost
tradeoffs of our approach under different conditions is a topic of further
study.

Additionally, the performance gain of caching should be always
weighed against the end-user guarantees. Suppose that a client holding a
cached data is falsely suspected, and the lease is granted to another client.
Then, when the original client eventually attempts to write the cached data
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back to disk, its write would be aborted to prevent inconsistency. Subse-
quently, all the modifications issued by the end-user will be lost. In order
to provide a reasonable level of end-user semantics, the cached copy must
be synchronized with the disk copy frequently enough. Thus, the lease
renewal can be piggybacked on these synchronization messages.
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