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Abstract. We present an algorithm for propagating updates with infor-
mation theoretic security that propagates an update in time logarithmic
in the number of replicas and linear in the number of corrupt replicas.
We prove a matching lower bound for this problem.

I cannot tell how the truth may be; I say the tale as 'twas said to
me. —Sir Walter Scott

1 Introduction

In this paper, we consider the problem of secure information dissemination with
information theoretic guarantees. The system we consider consists of a set of
replica servers that store copies of some information, e.g., a file. A concern
of deploying replication over large scale, highly decentralized networks is that
some threshold of the replicas may become (undetectably) corrupt. Protection
by means of cryptographic signatures on the data might be voided if the corrup-
tion is the action of an internal intruder, might be impossible if data is generated
by low powered devices, e.g., replicated sensors, or might simply be too costly to
employ. The challenge we tackle in this work is to spread updates to the stored
information in this system efficiently and with unconditional security, while pre-
venting corrupted information from contaminating good replicas. Our model is
relevant for applications that employ a client-server paradigm with replication
by the servers, for example distributed databases and quorum-systems.

More specifically, our problem setting is as follows. Our system consists of
n replica servers, of which strictly less than a threshold b may be arbitrarily
corrupt; the rest are good replicas. We require that each pair of good servers is
connected by an authenticated, reliable, non-malleable communication channel.
In order to be able to distinguish correct updates from corrupted (spurious)
ones, we postulate that each update is initially input to an initial set of a good
replicas, where « is at least b, the presumed threshold on the possible number
of corrupt replicas. In a client-server paradigm, this means that the client’s
protocol for submitting an update to the servers addresses all the replicas in the
initial set. The initial set is not known apriori, nor is it known to the replicas
themselves at the outset of the protocol, or even during the protocol. Multiple
updates are being continuously introduced to randomly designated initial sets,



and the diffusion of multiple updates actually occurs simultaneously. This is done
by packing several updates in each message. Because we work with information
theoretic security, the only criterion by which an update is accepted through
diffusion by a good replica is when b different replicas independently vouch for
its veracity. It should be stressed that we do not employ cryptographic primitives
that are conditioned on any intractability assumptions, and hence, our model is
the full Byzantine model without signatures.

The problem of secure information dissemination in a full Byzantine environ-
ment was initiated in [MMR99] and further explored in [MRRSO01]. Because of
the need to achieve information theoretic security, the only method to ascertain
the veracity of updates is by replication. Consequently, those works operated
with the following underlying principle: A replica is initially active for an up-
date if it is input to it, and otherwise it is passive. Active replicas participate in
a diffusion protocol to disseminate updates to passive replicas. A passive replica
becomes active when it receives an update directly from b different sources, and
consequently becomes active in its diffusion. For reasons that will become clear
below, we call all algorithms taking this approach conservative. More formally:

Definition 1. A diffusion algorithm in which a good replica p sends an update u
to another replica q only if p is sure of the update’s veracity is called conservative.

In contrast, we call non-conservative algorithms liberal. Conservative algo-
rithms are significantly limited in their performance. To illustrate this, we need
to informally establish some terminology. First, for the purpose of analysis, we
conceive of propagation protocols as progressing in synchronous rounds, though
in practice, the rounds need not occur in synchrony. Further, for simplicity, we
assume that in each round a good replica can send out at most one message
(i.e., the Fan-out, F°"t, is one); more detailed treatment can relate to F°% as
an additional parameter. The two performance measures introduced in [MMR99]
are as follows (precise definitions are given in the body of the paper):

— Let Delay denote the expected number of communication rounds from when
an update is input to the system and until it reaches all the replicas;

— Let Fan-in (F'™) denote the expected maximum number of messages received
by any replica from good replicas in a round (intuitively, the F" measures
the “load” on replicas).

In [MMRY9] a lower bound is shown on conservative algorithms of Delay *
Fin = Q((nb/a)“%). This linear lower bound is discouraging, especially com-
pared with the cost of epidemic-style diffusion of updates in benign-failure
environments!, which has Delay x F'" = O(logn). Such efficient diffusion would
have been possible in a Byzantine setting if signatures were utilized to distin-
guish correct from spurious updates, but as already discussed, deploying digital
signatures is ruled out in our setting. It appears that the advantages achieved
by avoiding digital signatures come at a grave price.

! In epidemic-style diffusion we refer to a method whereby in each round, each active
replica chooses a target replica independently at random and sends to it the update.



Fortunately, in this paper we propose an approach for diffusion in full Byzan-
tine settings that is able to circumvent the predictions of [MMR99] using a fun-
damentally different approach. Qur proposed liberal algorithm has Delay* Fi" =
O(b + logn) and enjoys the same simplicity of epidemic-style propagation. The
main price paid is in the size of messages used in the protocol. Although previous
analyses ignored the size of messages, we note that our method requires addi-
tional communication space of n@(1°8(0+108 1)) per message. In terms of delay, we
prove our algorithm optimal by showing a general lower bound of £2(b™—*+log )
on the delay for the problem model.

Our liberal approach works as follows. As before, a replica starts the protocol
as active if it receives an update as input. Other replicas start as passive. Active
replicas send copies of the update to other replicas at random. When a passive
replica receives a copy of an update through another replica, it becomes hesi-
tant for this update. A hesitant replica sends copies of the update, along with
information about the paths it was received from, to randomly chosen replicas.
Finally, when a replica receives copies of an update over b vertex-disjoint paths,
it believes its veracity, and becomes active for it.

It should first be noted that this method does not allow corrupt updates to
be accepted by good replicas. Intuitively, this is because when an update reaches
a good replica, the last corrupt replica it passed through is correctly expressed in
its path. Therefore, a spurious update cannot reach a good replica over b disjoint
paths.

It is left to analyze the diffusion time and message complexity incurred by
the propagation of these paths. Here, care should be taken. Since we show that
a lower bound of 2(b%=2 +log %) holds on the delay, then if path-lengthening
proceeds uncontrolled throughout the algorithm, then messages might carry up
to O(b®) paths. For a large b, this would be intolerable, and also too large to
search for disjoint paths at the receivers. Another alternative that would be
tempting is to try to describe the paths more concisely by simply describing the
graph that they form, having at most O(nb) edges. Here, the problem is that
corrupt replicas can in fact create spurious updates that appear to propagate
along b vertex-disjoint paths in the graph, despite the fact that there were no
such paths in the diffusion.

Our solution is to limit all paths to length log . That is, a replica that
receives an update over a path of length log 7 does not continue to further prop-
agate this path. Nevertheless, we let the propagation process run for O(b+log 7)
rounds, during which paths shorter than log 3 continue to lengthen. This pro-
cess generates a dense collection of limited length paths. Intuitively, the diffusion
process then evolves in two stages.

1. First, the diffusion of updates from the a active starting points is carried
as an independent epidemic-style process, so each one of the active replicas
establishes a group of hesitant replicas to a vicinity of logarithmic diameter.

2. Each log-diameter vicinity of active replicas now directly targets (i.e., with
paths of length 1) the remaining graph. With careful analyses it is shown
that it takes additional O(b) rounds for each replica to be targeted directly



by some node from b out of the a disjoint vicinities of active replicas, over b
disjoint paths.

Throughout the protocol, each replica diffuses information about up to O((b+
log %)log ) different paths, which is the space overhead on the communication.

1.1 Related work

Diffusion is a fundamental mechanism for driving replicated data to a consistent
state in a highly decentralized system. Our work optimizes diffusion protocols in
systems where arbitrary failures are a concern, and may form a basis of solutions
for disseminating critical information in this setting.

The study of Byzantine diffusion was initiated in [MMR99]. That work es-
tablished a lower bound for conservative algorithms, and presented a family
of nearly optimal conservative protocols. Our work is similar to the approach
taken in [MMRO99] in its use of epidemic-style propagation, and consequently
in its probabilistic guarantees. It also enjoys similar simplicity of deployment,
especially in real-life systems where partially-overlapping universes of replicas
exist for different data objects, and the propagation scheme needs to handle
multiple updates to different objects simultaneously. The protocols of [MMR99]
were further improved, and indeed, the lower bound of [MMR99] circumvented
to some extent, in [MRRSO01], but their general worst case remained the same.

The fundamental distinction between our work and the above works is in
the liberal approach we take. With liberal approach, we are able to completely
circumvent the lower bound of [MMR99], albeit at the cost of increased message
size. An additional advantage of liberal methods is that in principle, they can
provide update diffusion in any b-connected graph (though some topologies may
increase the delay of diffusion), whereas the conservative approach might simply
fail to diffuse updates if the network is not fully connected. The investigation
of secure information diffusion in various network topologies is not pursued fur-
ther in this paper however, and is a topic of our ongoing research. The main
advantage of the conservative approach is that spurious updates generated by
corrupt replicas cannot cause good replicas to send messages containing them;
they may however inflict load on the good replicas in storage and in receiving
and processing these updates. Hence, means for constraining the load induced
by corrupt replicas must exist in both approaches.

While working on this paper, we learned that our liberal approach to se-
cure information diffusion has been independently investigated by Minsky and
Schneider [MSO01]. Their diffusion algorithms use age to decide which updates
to keep and which to discard, in contrast to our approach which discards based
on the length of the path an update has traversed. Also, in the algorithms of
[MSO01], replicas pull updates, rather than push messages to other replicas, in
order to limit the ability of corrupt hosts to inject bogus paths into the system.
Simulation experiments are used in [MS01] to gain insight into the performance
of those protocols; a closed-form analysis was sought by Minsky and Schneider
but could not be obtained. Our work provides the foundations needed to analyze



liberal diffusion methods, provides general lower bounds, and proves optimality
of the protocol we present.

Prior to the above works, previous work on update diffusion focused on sys-
tems that can suffer benign failures only. Notably, Demers et al. [DGH+87]
performed a detailed study of epidemic algorithms for the benign setting, in
which each update is initially known at a single replica and must be diffused to
all replicas with minimal traffic overhead. One of the algorithms they stud-
ied, called anti-entropy and apparently initially proposed in [BLNS82], was
adopted in Xerox’s Clearinghouse project (see [DGH+87]) and the Ensemble
system [BHO+99]. Similar ideas also underly IP-Multicast [Dee89] and MUSE
(for USENET News propagation) [LOM94]. The algorithms studied here for
Byzantine environments behave fundamentally differently from any of the above
settings where the system exhibits benign failures only.

Prior studies of update diffusion in distributed systems that can suffer Byzan-
tine failures have focused on single-source broadcast protocols that provide re-
liable communication to replicas and replica agreement on the broadcast value
(e.g., [LSP82,DS83,BT85,MRI7]), sometimes with additional ordering guaran-
tees on the delivery of updates from different sources
(e.g., [Rei94,CASD95,MM95,KMMI8 ,CL99]). The problem that we consider here
is different from these works in the following ways. First, in these prior works, it
is assumed that one replica begins with each update, and that this replica may
be faulty—in which case the good replicas can agree on an arbitrary update. In
contrast, in our scenario we assume that at least a threshold a > b of good repli-
cas begin with each update, and that only these updates (and no arbitrary ones)
can be accepted by good replicas. Second, these prior works focus on reliability,
i.e., guaranteeing that all good replicas (or all good replicas in some agreed-upon
subset of replicas) receive the update. Our protocols diffuse each update to all
good replicas only with some probability that is determined by the number of
rounds for which the update is propagated before it is discarded. Our goal is to
devise diffusion algorithms that are efficient in the number of rounds until the
update is expected to be diffused globally and the load imposed on each replica
as measured by the number of messages it receives in each round.

2 Preliminaries

Following the system model of [MMR99], our system consists of a universe S of n
replicas to which updates are input. Strictly less than some known threshold b of
the replicas could be corrupt; a corrupt replica can deviate from its specification
arbitrarily (Byzantine failures). Replicas that always satisfy their specifications
are good. We do not allow the use of digital signatures by replicas, and hence,
our model is the full information-theoretic Byzantine model.

Replicas can communicate via a completely connected point-to-point net-
work. Communication channels between good replicas are reliable and authen-
ticated, in the sense that a good replica p; receives a message on the communi-



cation channel from another good replica p; if and only if p; sent that message
to Di-

Our work is concerned with the diffusion of updates among the replicas.
Each update u is introduced to an initial set I,, containing at least a > b good
replicas, and is then diffused to other replicas via message passing. Replicas in [,
are considered active for u. The goal of a diffusion algorithm is to make all good
replicas active for u, where a replica p is active for u only if it can guarantee its
veracity.

Our diffusion protocols proceed in synchronous rounds. For simplicity, we
assume that each update arrives at each replica in I,, simultaneously, i.e., in the
same round at each replica in I,,. This assumption is made purely for simplicity
and does not impact on either the correctness or the speed of our protocol. In
each round, each replica selects one other replica to which it sends information
about updates as prescribed by the diffusion protocol. That is, the Fan-out, F°%,
is assumed to be 1.2 A replica receives and processes all the messages sent to it
in a round before the next round starts.

We consider the following three measures of quality for diffusion protocols:

Delay: For each update, the delay is the worst-case expected number of rounds
from the time the update is introduced to the system until all good replicas
are active for update. Formally, let n,, be the round number in which update
u is introduced to the system, and let 7 be the round in which a good
replica p becomes active for update u. The delay is E[max, {7} — 1],
where the expectation is over the random choices of the algorithm and the
maximization is over good replicas p, all failure configurations C' containing
fewer than b failures, and all behaviors of those corrupt replicas. In particular,
maxp,c{T;)‘} is reached when the corrupt replicas send no updates, and our
delay analysis applies to this case.

Fan-in: The fan-in measure, denoted by F”, is the expected maximum num-
ber of messages that any good replica receives in a single round from good
replicas under all possible failure scenarios. Formally, let p;) be the number of
messages received in round ¢ by replica p from good replicas. Then the fan-in
in round i is E[max, c{p}}], where the maximum is taken with respect to
all good replicas p and all failure configurations C' containing fewer than b
failures. Amortized fan-in is the expected maximum number of messages re-
ceived over multiple rounds, normalized by the number of rounds. Formally,
a k-amortized fan-in starting at round [ is E[maxpp{zgf ph/k}]. We em-
phasize that fan-in and amortized fan-in are measures only for messages from
good replicas.

Communication complexity: The maximum amount of information pertain-
ing to a specific update, that was sent by a good replica in a single message.
The maximum is taken on all the messages sent (in any round), and with
respect to all good replicas and all failure configurations C' containing fewer
than b failures.

2 We could expand the treatment here to relate to F°** as a parameter, but chose not
to do so for simplicity.



Note that what interests us is the expected value of the measures. When we
make statements of the type ”within an expected f(r) rounds, P(r)” (for some
predicate P, and function f), we mean that if we define X as a random variable
that measures the time until P(r) is true then E(X) = f(r).

The following bound presents an inherent tradeoff between delay and fan-
in for conservative diffusion methods (Definition 1), when the initial set I, is
arbitrarily designated:

Theorem 1 ([MMR99]). Let there be a conservative diffusion algorithm. De-
note by D the algorithm’s delay, and by F'* its D-amortized fan-in. Then
DFi" = Q(bn/a), for b > 2logn.

One contribution of the present work is to show that the lower bound of
Theorem 1 for conservative diffusion algorithms, does not hold once inactive
replicas are allowed to participate in the diffusion.

3 Lower Bounds

In this section we present lower bounds which apply to any diffusion method in
our setting. Our main theorem sets a lower bound on the delay. It states that
the propagation time is related linearly to the number of corrupt replicas and
logarithmically to the total number of replicas.

We start by showing the relation between the delay and the number of corrupt
players.

Lemma 1. Let there be any diffusion algorithm in our setting. Let D denote
the algorithm’s delay. Then D = Q(b™=).

Proof. Since it is possible that there are b— 1 corrupt replicas, each good replica
who did not receive the update initially as input must be targeted directly by
at least b different other replicas, as otherwise corrupt replicas can cause it
to accept an invalid update. Since only « replicas receive the update initially,
at least b(n — «) direct messages must be sent. As F,,; = 1 and there are n
replicas, at most n messages are sent in each round. Therefore it takes at least

n—

“—% rounds to have b(n — «) direct messages sent.
We now show the relationship of the delay to the number of replicas.

Lemma 2. Let there be any diffusion algorithm in our setting. Let D denote
the algorithm’s delay. Then D = 2(log %).

Proof. Each replica has to receive a copy of the update. Since F,,; = 1, the
number of replicas who receive the update up to round ¢ is at most twice the
number of replicas who received the update up to round ¢ — 1. Therefore at the
final round t.,q, when all replicas received the update, we have that 2ireq = n
or tenq = log g



The following theorem immediately follows from the previous two lemmas:

Theorem 2. Let there be any diffusion algorithm in our setting. Let D denote
the algorithm’s delay. Then D = 2(b"—2 +log ).

Remark 1. We will deal primarily in the case where o < % as otherwise the
diffusion problem is relatively simple. In particular, if o > %, then we can use
the algorithm of [MMR99] to yield delay of O(b), which is optimal for Fout = 1.
When a < 4 our lower bound is equal to 2(b + log ), which is met by the
propagation algorithm presented below.

Remark 2. We note that in order for an update to propagate successfully we
must have that a > b. From this, it immediately follows that b < . However,
below we shall have a tighter constraint on b that stems from our diffusion
method. We note that throughout this paper no attempt is made to optimize
constants.

4 The propagation algorithm

In this section we present an optimal propagation algorithm that matches the
lower bound shown in section 3.

In our protocol, each replica can be in one of three states for a particular
update: passive, hesitant or active. Each replica starts off either in the active
state, if it receives the update initially as input, or (otherwise) in the passive
state. In each round, the actions performed by a replica are determined by its
state. The algorithm performed in a round concerning a particular update is as
follows:

— An active replica chooses a random replica and sends the update to it. (Com-
pared with the actions of hesitant replicas below, the lack of any paths at-
tached to the update conveys the replica’s belief in the update’s veracity.)

— A passive or hesitant replica p that receives the update from ¢, with various
(possibly empty) path descriptions attached, appends ¢ to the end of each
path and saves the paths. If p was passive, it becomes hesitant.

— A hesitant replica chooses a random replica and sends to it all vertex-minimal
paths of length < log 7 over which the update was received.

— A hesitant replica that has b vertex disjoint paths for the update becomes
active.

A couple of things are worth noting here. First, it should be clear that the al-
gorithm above executes simultaneously for all concurrently propagating updates.
Second, any particular update is propagated by replicas for a limited number of
rounds. The purpose of the analysis in the rest of the paper is to determine the
number of rounds needed for the full propagation of an update. Finally, some



optimizations are possible. For example, a hesitant replica p that has b vertex
disjoint paths passing through a single vertex ¢ (i.e., disjoint between ¢ and p)
can unify the paths to be equivalent to a direct communication from the vertex
q.

We now prove that our algorithm is correct.

Lemma 3. If a good replica becomes active for an update then the update was
initially input to a good replica.

Proof. There are two possible ways in which a good replica can become active for
an update. The first possibility is when the replica receives the update initially
as input. In this case the claim certainly holds.

The second possibility is when the replica receives the update over b vertex
disjoint paths. We say that a corrupt replica controls a path if it is the last
corrupt replica in the path. Note that for any invalid update which was generated
by corrupt replica(s), there is exactly one corrupt replica controlling any path
(since by definition the update was created by the corrupt replicas). Since good
replicas follow the protocol and do not change the path(s) they received, the
corrupt controlling replica will not be removed from any path by any subsequent
good replica receiving the update. As there are less than b corrupt replicas and
the paths are vertex disjoint there are less than b such paths. As a good replica
becomes active for an update when it receives the update over b disjoint paths,
at least one of the paths has only good replicas in it. Therefore the update was
input to a good replica.

The rest of this paper will prove the converse direction. If an update was
initially input to a > b good replicas then within a relatively small number of
rounds, all good replicas will receive the update with high probability.

5 Performance analysis

In this section, we proceed to analyze the performance of our algorithm. Our
treatment is based on a communication graph that gradually evolves in the
execution. We introduce some notation to be used in the analysis below. At
every round r, the communication graph G, = (V,E,) is defined on (good)
vertices V such that there is a (directed) edge between two vertices if one sent
any message to the other during round r. We denote by N¢(I) the neighborhood
of I (singleton or set) in G. We denote by || p, ¢ || the shortest distance between
pand g in G. In the analysis below, we use vertices and replicas interchangeably.

Our proof will make use of gossip-circles that gradually evolve around active
replicas. Intuitively, the gossip-circle C(p,d,r) of a good active replica is the set
of good replica that heard the update from p over good paths (comprising good
replicas) of length up to d in r rounds. Formally:




Definition 2. Let p be some good replica which is active for the update u. Let
{G; = (V,E;)}j=1.r be the set of communication graphs of r rounds of the
execution of vertices in V. Recall that Ng(I) denotes the set of all neighbors in
a graph G of nodes in I. We then define gossip circles of p in r rounds inductively
as follows:
Cv(p,0,7) = {p}
Vi<d<r:
CV(p= d: T') = CV(p7 d— 1,7“) U
{q € NGd (CV(p7 d—1, 7“)) || p.q Cv(p,dfl,r)g min{d_17 log %_1}}

When 'V is the set of good replicas, we omit it for simplicity. Note that the gos-

sip circle C(p,d,r) is constrained by definition to have radius < min{d,log % }.

The idea behind our analysis is that any b initial active good replicas spread
paths that cover disjoint low-diameter gossip-circles of size 3. Hence, it is suf-
ficient for any replica to be directly targeted by some replica from each one of
these sets in order to have b vertex-disjoint paths from initial replicas.

We first show a lemma about the spreading of epidemic style propagation
with bounded path length. Without bounding paths, the analysis reduces to

epidemic-style propagation for benign environment, as shown in [DGH+87].

Lemma 4. Let p € I, be a good replica, and let d <log 3. Assume there are no
corrupt replicas. Then within an ezxpected r > d rounds, |C(p,d,r)| > min{(%)d—f-
(r=d)(3)"* 5}
Proof. The proof looks at an execution of r rounds of propagation in two parts.
The first part consists of d rounds. In this part, the set of replicas that received
a copy of u (equivalently, received a copy of u over paths of length < d), grows
exponentially. That is, in d rounds, the update propagates to (%)d replicas. The
second part consists of the remaining r — d rounds. This part makes use of the
fact that at the end of the first part, an expected (%)’i’4 replicas receive a copy of
u over paths of length < d. Hence, in the second part, a total of (r —d) x (2)?~*
replicas receive u.

Formally, let m; denote the number of replicas that received u from p over
paths of length < d by round j, i.e., m; = |C(p,d, j)|.

Let j < d. So long as the number of replicas reached by paths of length < d
does not already exceed %, then in round j + 1 each replica in C(p, d, j) targets
a new replica with probability > % Therefore, the expected number of messages
sent until % new replicas are targeted is at most m;. Furthermore, since at least
m; messages are sent in round j, this occurs within an expected one round. We
therefore have that the expected time until (%)’i replicas receive u over paths of
length < d is at most d.

From round d + 1 on, we note that at least half of mg4 received u over paths
of length strictly less than d. Therefore, in each round j > d, there are at least
1 x (2)? replicas forwarding u over paths of length < d. So long as m; <
then in round j each of these replicas targets a new replica with probability >

n
27
1
>

Therefore, the expected number of messages sent until (£)?7* < 2 x § x (2)?



new replicas are targeted is at most % X (%)d, which occurs in an expected one
round.

Putting the above together, we have that within an expected r rounds, (%)d—f-
(r —d) x (2)%* replicas are in C(p,d,r).

Since the choice of communication edges in the communication graph is made
at random, we get as an immediate corollary:

Corollary 1. Let V' C V be a set of vertices, containing all corrupt ones,
chosen independently from the choices of the algorithm, such that |V'| < 2. Let
p € 1, be a good replica, and let d < log¢. Then within an expected 3r > d
rounds, |Cy\vi(p,d,3r)| > min{(%)d + (r — d)(%)d"l, 1

We now use corollary 1 to build b disjoint gossip circles of initial replicas, and
wish to proceed with the analysis of the number of rounds it takes for replicas
to be targeted by these disjoint sets. As edges in the communication graph are
built at random, a tempting approach would be to treat this as a simple coupon
collector problem on the b gossip-circles where each replica wishes to “collect a
member” of each of these sets by being targeted with an edge from it. With this
simplistic analysis, it would take each replica O(blogb) rounds to collect all the
coupons, and an additional logarithmic factor in n for all replicas to complete.
The resulting analysis would provide an upper bound of O(b(logb)(logn)) on
the delay. Although this is sufficient for small b, for large b we wish to further
tighten the analysis on the number of rounds needed for diffusion.

The approach we take is to gradually adapt the size of the disjoint gossip-
circles as the process evolves, and to show that the expected amount of time until
all sets are connected to a replica remains constant. More precisely, we show that
in an expected O(b) rounds, a replica has edges to half of b gossip-circles of size
13- We then look at the communication graph with all of the vertices in the
paths of the previous step(s) removed. We show that in time O(b/2), a replica
has edges to gossip-circles of size i—g of half of the % remaining initial replicas.
And so on. In general, we have an inductive analysis for £ = 0..logb. For each
k, we denote by, = 2% For step k of the analysis, we show that in time O(by), a
replica has disjoint paths of length < log ﬁ to %’“ of the initial replicas. Hence,
in total time O(b), a replica connects to b initial replicas over disjoint paths, all
of length <'log # (and hence, not exceeding the algorithm’s path limit).

Our use of Corollary 1 is as follows. Let by = zik and let V' denote a set
of vertices we wish to exclude from the graph, where [V'| < Z. Then we have
that within an expected 3r = 3(b + 2log ﬁ) rounds, each initial good replica
has a gossip circle of diameter d = max{1,2log ﬁ} whose size is at least
(b+d—d)(3)" > .

We now use this fact to designate disjoint low-diameter gossip circles around
b good replicas in I,,.



Lemma 5. Let I C I, be a subset of initial good replicas of size by,. Let W' be a
subset of replicas with |W'| < 15. Denote by d = max{1, 2log 373-}. Then within
an ezxpected 3r = 3(b + d) rounds there exist disjoint subsets {C;}ic1 containing
no wvertices of W', such that each C; C Cyy\w(i,d,3r), and such that each
ICi| = 75+

Proof. The proof builds these sets for I inductively. Suppose that Ci,...,C;_1,
for 0 < i < by, have been designated already, such that for all 1 < j < i —1,
we have that C; C C(j,d,3r) and |Cj| = 3. Denote by C = U;_, ; , Cj.
Then the total number of vertices in V' = C' UW" is at most 15 + (i — 1) 73~ <
15+ bkﬁ < 3. From Corollary 1, we get that within an expected 3r rounds,
and without using any vertex in V', the gossip circle Cy\y- (i, d, 3r) contains at

n

least (b+2logﬁ — 2log +2 ) (é)(mogl’xbk = > 2 Hence, we set C; to

bxby 2 4bg

be a subset of C(i,d, 3r) of size - and the lemma follows.

We now analyze the delay until a vertex has direct edges to these b, disjoint
sets.

Lemma 6. Letv € V be a good replica. Let by, = 2% as before and let {C;}iz1. b,

be disjoint sets, each of size 7 and diameter 2log bX"bk (as determined by

4by,
Lemma 5). Then within an expected 4by, rounds there are edges from %’“ of the
sets to v.

Proof. The proof is simply a coupon collector analysis of collecting %’“ out of by
coupons, where in epoch i, for 1 < i < %’“, the probability of collecting the i’th
new coupon in a round is precisely the probability of v being targeted by a new

br — 1) 52—
set, i.e., m The expected number of rounds until completion is therefore

Dic1 (b /2) s < Aby.

We are now ready to put these facts together to analyze the delay that a
single vertex incurs for having disjoint paths to b initial replicas.

Lemma 7. Let v € V be a good replica. Suppose that b < ¢5. Then within an
expected 5(b + log %) rounds there are b vertex disjoint paths of length < log %
from I, to v.

Proof. We prove by induction on by = 2%, for k = 0..(logb — 1). To begin the
induction, we set by = b. By Corollary 1, within an expected b+2log ﬁ stages,
there are by = b disjoint sets (of radius 2log 33%5-) whose size is 33-. By Lemma 6,
within 4by rounds, v has direct edges to %0 of these sets. Hence, it has disjoint
paths of length < 2log ﬁ + 1 to b7° initial replicas. These paths comprise at

most % (21log 75, T 1) good vertices.

For step 0 < k < (logb) of the analysis, we set by = 2% The set of vertices
used in paths so far, together with all the corrupt vertices, total less than



k'

by n b 2% n n
b — | 21 1) <b — |log —— + 1| < b+2b(1+log —=) .
+k,z<k 2 < Og b x bk’ + > — +k,Z<k 2];;' ( Og b2 + ) — + ( + Og b2)

By our assumption that b < g, we get that the total number of vertices
n

used until step k is less than 5. Hence, in each step 0 < k < logh, we apply
Corollary 1 to form by disjoint sets (of radius 2log ﬁ) whose size is ;- each.
By Lemma 6, half of these sets have direct edges to v within an expected 4by,
rounds.

In total, we showed that in expected maxo<<iog »{4bx+b+2log ﬁ} rounds,

v has disjoint paths (of length at most log %) to b initial replicas.

We now wish to bound the time when all of the nodes have b vertex disjoint
paths to I,. A tempting approach would be to use a Chernoff bound, but the
analysis would then require an additional logarithmic factor in n. This factor
can be avoided by utilizing the fact that after a O(logn + b) rounds there exist a
fraction of the replicas who are active for the update. Finally, propagation from
a linear set is easily done.

Lemma 8. Let ¢ > 1 be a constant. The expected time until (n — b) (1 — 1)
replicas become active is O(b + logn).

Proof. By Lemma 7, the expected time for a replica to become active is 5(b +
log 7). Hence, the probability that a replica becomes active in ¢ x 5(b + log 7)
rounds or more is less than 1. Hence, within an expected ¢ x 5(b+ log %) rounds
the number of active replicas is at least (n —b) (1 —21).

We now choose a particular value for ¢ in the previous lemma. We note that
we choose an arbitrary value without attempting to minimize the constants.

For ¢ = 2, within an expected 10(b+log %) rounds there are 3 (n—b) replicas
who are active for the update. By reusing the supposition b < g from Lemma 7,
we get that 1(n —b) > 3(n — &) > 2n. This means that there are at least 2n
good replicas who are active for the update.

Lemma 9. If at least %n good replicas are active for the update then within an
expected O(b + logn) rounds all of the replicas become active for the update.

Proof. Fix any replica and let Y; be the number of updates from active replicas
that the replica receives in round 7. Let Y be the number of updates that the
replica receives in r rounds, i.e., Y = Y., ¥;. By the linearity of expectation,
E(Y) =", E(Y;) > Zr. Using a Chernoff bound we have that Pr[Y < -] <
e~ 5. Therefore if r = 48logn + 2b we have that Pr[Y < 5] < 1.

Theorem 3. The algorithm terminates in an expected O(logn + b) rounds.

Proof. By corollary 7, and lemma 8 it follows that within O(logn +b) rounds 0.8
of the replicas become active. From Lemma 9 within an additional O(logn + b)
rounds all of the replicas become active.



Therefore, our delay matches the lower bound of theorem 2.

We conclude the analysis with a log amortized F'™ analysis and a commu-
nication complexity bound. The log n amortized F'™ of our algorithm as shown
in [MMR99] is 1.

In order to finish the analysis the communication complexity (which also
bounds the required storage size) must be addressed. Each vertex v € V receives
at most O(b+log %) sets of paths. Paths are of length at most log 7. Therefore,
the communication overhead per message can be bounded by O(b+log )8 & =
(%)O(log(b+10g n)) .

This communication complexity can be enforced by good replicas even in the
presence of faulty replicas. A good replica can simply verify that (a) the length
of all paths in any incoming message does not exceed log 7, and that (b) the
out-degree of any vertex does not exceed O(b + log ). Any violation of (a) or

(b) indicates that the message was sent by a faulty replica, and can be safely
discarded.

6 Conclusions and future work

This paper presented a round-efficient algorithm for disseminating updates in
a Byzantine environment. The protocol presented propagates updates within
an expected O(b + lgn) rounds, which is shown to be optimal. Compared with
previous methods, the efficiency here was gained at the cost of an increase in
the size of messages sent in the protocol. Our main direction for future work is
to reduce the communication complexity, which was cursorily addressed in the
present work.
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