
Optimal Unonditional Information Di�usionDahlia Malkhi, Elan Pavlov, and Yaron SellaShool of Computer Siene and EngineeringThe Hebrew University of Jerusalem, Jerusalem 91904, Israelfdalia,elan,ysellag�s.huji.a.ilAbstrat. We present an algorithm for propagating updates with infor-mation theoreti seurity that propagates an update in time logarithmiin the number of replias and linear in the number of orrupt replias.We prove a mathing lower bound for this problem.I annot tell how the truth may be; I say the tale as 'twas said tome. {Sir Walter Sott1 IntrodutionIn this paper, we onsider the problem of seure information dissemination withinformation theoreti guarantees. The system we onsider onsists of a set ofreplia servers that store opies of some information, e.g., a �le. A onernof deploying repliation over large sale, highly deentralized networks is thatsome threshold of the replias may beome (undetetably) orrupt. Protetionby means of ryptographi signatures on the data might be voided if the orrup-tion is the ation of an internal intruder, might be impossible if data is generatedby low powered devies, e.g., repliated sensors, or might simply be too ostly toemploy. The hallenge we takle in this work is to spread updates to the storedinformation in this system eÆiently and with unonditional seurity, while pre-venting orrupted information from ontaminating good replias. Our model isrelevant for appliations that employ a lient-server paradigm with repliationby the servers, for example distributed databases and quorum-systems.More spei�ally, our problem setting is as follows. Our system onsists ofn replia servers, of whih stritly less than a threshold b may be arbitrarilyorrupt; the rest are good replias. We require that eah pair of good servers isonneted by an authentiated, reliable, non-malleable ommuniation hannel.In order to be able to distinguish orret updates from orrupted (spurious)ones, we postulate that eah update is initially input to an initial set of � goodreplias, where � is at least b, the presumed threshold on the possible numberof orrupt replias. In a lient-server paradigm, this means that the lient'sprotool for submitting an update to the servers addresses all the replias in theinitial set. The initial set is not known apriori, nor is it known to the repliasthemselves at the outset of the protool, or even during the protool. Multipleupdates are being ontinuously introdued to randomly designated initial sets,



and the di�usion of multiple updates atually ours simultaneously. This is doneby paking several updates in eah message. Beause we work with informationtheoreti seurity, the only riterion by whih an update is aepted throughdi�usion by a good replia is when b di�erent replias independently vouh forits veraity. It should be stressed that we do not employ ryptographi primitivesthat are onditioned on any intratability assumptions, and hene, our model isthe full Byzantine model without signatures.The problem of seure information dissemination in a full Byzantine environ-ment was initiated in [MMR99℄ and further explored in [MRRS01℄. Beause ofthe need to ahieve information theoreti seurity, the only method to asertainthe veraity of updates is by repliation. Consequently, those works operatedwith the following underlying priniple: A replia is initially ative for an up-date if it is input to it, and otherwise it is passive. Ative replias partiipate ina di�usion protool to disseminate updates to passive replias. A passive repliabeomes ative when it reeives an update diretly from b di�erent soures, andonsequently beomes ative in its di�usion. For reasons that will beome learbelow, we all all algorithms taking this approah onservative. More formally:De�nition 1. A di�usion algorithm in whih a good replia p sends an update uto another replia q only if p is sure of the update's veraity is alled onservative.In ontrast, we all non-onservative algorithms liberal. Conservative algo-rithms are signi�antly limited in their performane. To illustrate this, we needto informally establish some terminology. First, for the purpose of analysis, weoneive of propagation protools as progressing in synhronous rounds, thoughin pratie, the rounds need not our in synhrony. Further, for simpliity, weassume that in eah round a good replia an send out at most one message(i.e., the Fan-out, F out, is one); more detailed treatment an relate to F out asan additional parameter. The two performane measures introdued in [MMR99℄are as follows (preise de�nitions are given in the body of the paper):{ Let Delay denote the expeted number of ommuniation rounds from whenan update is input to the system and until it reahes all the replias;{ Let Fan-in (F in) denote the expeted maximum number of messages reeivedby any replia from good replias in a round (intuitively, the F in measuresthe \load" on replias).In [MMR99℄ a lower bound is shown on onservative algorithms of Delay �F in = 
((nb=�)1� 1b ). This linear lower bound is disouraging, espeially om-pared with the ost of epidemi-style di�usion of updates in benign-failureenvironments1, whih has Delay �F in = O(logn). Suh eÆient di�usion wouldhave been possible in a Byzantine setting if signatures were utilized to distin-guish orret from spurious updates, but as already disussed, deploying digitalsignatures is ruled out in our setting. It appears that the advantages ahievedby avoiding digital signatures ome at a grave prie.1 In epidemi-style di�usion we refer to a method whereby in eah round, eah ativereplia hooses a target replia independently at random and sends to it the update.



Fortunately, in this paper we propose an approah for di�usion in full Byzan-tine settings that is able to irumvent the preditions of [MMR99℄ using a fun-damentally di�erent approah. Our proposed liberal algorithm hasDelay�F in =O(b + logn) and enjoys the same simpliity of epidemi-style propagation. Themain prie paid is in the size of messages used in the protool. Although previousanalyses ignored the size of messages, we note that our method requires addi-tional ommuniation spae of nO(log(b+logn)) per message. In terms of delay, weprove our algorithm optimal by showing a general lower bound of
(bn��n +log n� )on the delay for the problem model.Our liberal approah works as follows. As before, a replia starts the protoolas ative if it reeives an update as input. Other replias start as passive. Ativereplias send opies of the update to other replias at random. When a passivereplia reeives a opy of an update through another replia, it beomes hesi-tant for this update. A hesitant replia sends opies of the update, along withinformation about the paths it was reeived from, to randomly hosen replias.Finally, when a replia reeives opies of an update over b vertex-disjoint paths,it believes its veraity, and beomes ative for it.It should �rst be noted that this method does not allow orrupt updates tobe aepted by good replias. Intuitively, this is beause when an update reahesa good replia, the last orrupt replia it passed through is orretly expressed inits path. Therefore, a spurious update annot reah a good replia over b disjointpaths.It is left to analyze the di�usion time and message omplexity inurred bythe propagation of these paths. Here, are should be taken. Sine we show thata lower bound of 
(bn��n + log n� ) holds on the delay, then if path-lengtheningproeeds unontrolled throughout the algorithm, then messages might arry upto O(bb) paths. For a large b, this would be intolerable, and also too large tosearh for disjoint paths at the reeivers. Another alternative that would betempting is to try to desribe the paths more onisely by simply desribing thegraph that they form, having at most O(nb) edges. Here, the problem is thatorrupt replias an in fat reate spurious updates that appear to propagatealong b vertex-disjoint paths in the graph, despite the fat that there were nosuh paths in the di�usion.Our solution is to limit all paths to length log nb . That is, a replia thatreeives an update over a path of length log nb does not ontinue to further prop-agate this path. Nevertheless, we let the propagation proess run for O(b+log nb )rounds, during whih paths shorter than log nb ontinue to lengthen. This pro-ess generates a dense olletion of limited length paths. Intuitively, the di�usionproess then evolves in two stages.1. First, the di�usion of updates from the � ative starting points is arriedas an independent epidemi-style proess, so eah one of the ative repliasestablishes a group of hesitant replias to a viinity of logarithmi diameter.2. Eah log-diameter viinity of ative replias now diretly targets (i.e., withpaths of length 1) the remaining graph. With areful analyses it is shownthat it takes additional O(b) rounds for eah replia to be targeted diretly



by some node from b out of the � disjoint viinities of ative replias, over bdisjoint paths.Throughout the protool, eah replia di�uses information about up to O((b+log nb )log nb ) di�erent paths, whih is the spae overhead on the ommuniation.1.1 Related workDi�usion is a fundamental mehanism for driving repliated data to a onsistentstate in a highly deentralized system. Our work optimizes di�usion protools insystems where arbitrary failures are a onern, and may form a basis of solutionsfor disseminating ritial information in this setting.The study of Byzantine di�usion was initiated in [MMR99℄. That work es-tablished a lower bound for onservative algorithms, and presented a familyof nearly optimal onservative protools. Our work is similar to the approahtaken in [MMR99℄ in its use of epidemi-style propagation, and onsequentlyin its probabilisti guarantees. It also enjoys similar simpliity of deployment,espeially in real-life systems where partially-overlapping universes of repliasexist for di�erent data objets, and the propagation sheme needs to handlemultiple updates to di�erent objets simultaneously. The protools of [MMR99℄were further improved, and indeed, the lower bound of [MMR99℄ irumventedto some extent, in [MRRS01℄, but their general worst ase remained the same.The fundamental distintion between our work and the above works is inthe liberal approah we take. With liberal approah, we are able to ompletelyirumvent the lower bound of [MMR99℄, albeit at the ost of inreased messagesize. An additional advantage of liberal methods is that in priniple, they anprovide update di�usion in any b-onneted graph (though some topologies mayinrease the delay of di�usion), whereas the onservative approah might simplyfail to di�use updates if the network is not fully onneted. The investigationof seure information di�usion in various network topologies is not pursued fur-ther in this paper however, and is a topi of our ongoing researh. The mainadvantage of the onservative approah is that spurious updates generated byorrupt replias annot ause good replias to send messages ontaining them;they may however init load on the good replias in storage and in reeivingand proessing these updates. Hene, means for onstraining the load induedby orrupt replias must exist in both approahes.While working on this paper, we learned that our liberal approah to se-ure information di�usion has been independently investigated by Minsky andShneider [MS01℄. Their di�usion algorithms use age to deide whih updatesto keep and whih to disard, in ontrast to our approah whih disards basedon the length of the path an update has traversed. Also, in the algorithms of[MS01℄, replias pull updates, rather than push messages to other replias, inorder to limit the ability of orrupt hosts to injet bogus paths into the system.Simulation experiments are used in [MS01℄ to gain insight into the performaneof those protools; a losed-form analysis was sought by Minsky and Shneiderbut ould not be obtained. Our work provides the foundations needed to analyze



liberal di�usion methods, provides general lower bounds, and proves optimalityof the protool we present.Prior to the above works, previous work on update di�usion foused on sys-tems that an su�er benign failures only. Notably, Demers et al. [DGH+87℄performed a detailed study of epidemi algorithms for the benign setting, inwhih eah update is initially known at a single replia and must be di�used toall replias with minimal traÆ overhead. One of the algorithms they stud-ied, alled anti-entropy and apparently initially proposed in [BLNS82℄, wasadopted in Xerox's Clearinghouse projet (see [DGH+87℄) and the Ensemblesystem [BHO+99℄. Similar ideas also underly IP-Multiast [Dee89℄ and MUSE(for USENET News propagation) [LOM94℄. The algorithms studied here forByzantine environments behave fundamentally di�erently from any of the abovesettings where the system exhibits benign failures only.Prior studies of update di�usion in distributed systems that an su�er Byzan-tine failures have foused on single-soure broadast protools that provide re-liable ommuniation to replias and replia agreement on the broadast value(e.g., [LSP82,DS83,BT85,MR97℄), sometimes with additional ordering guaran-tees on the delivery of updates from di�erent soures(e.g., [Rei94,CASD95,MM95,KMM98,CL99℄). The problem that we onsider hereis di�erent from these works in the following ways. First, in these prior works, itis assumed that one replia begins with eah update, and that this replia maybe faulty|in whih ase the good replias an agree on an arbitrary update. Inontrast, in our senario we assume that at least a threshold � � b of good repli-as begin with eah update, and that only these updates (and no arbitrary ones)an be aepted by good replias. Seond, these prior works fous on reliability,i.e., guaranteeing that all good replias (or all good replias in some agreed-uponsubset of replias) reeive the update. Our protools di�use eah update to allgood replias only with some probability that is determined by the number ofrounds for whih the update is propagated before it is disarded. Our goal is todevise di�usion algorithms that are eÆient in the number of rounds until theupdate is expeted to be di�used globally and the load imposed on eah repliaas measured by the number of messages it reeives in eah round.2 PreliminariesFollowing the system model of [MMR99℄, our system onsists of a universe S of nreplias to whih updates are input. Stritly less than some known threshold b ofthe replias ould be orrupt; a orrupt replia an deviate from its spei�ationarbitrarily (Byzantine failures). Replias that always satisfy their spei�ationsare good. We do not allow the use of digital signatures by replias, and hene,our model is the full information-theoreti Byzantine model.Replias an ommuniate via a ompletely onneted point-to-point net-work. Communiation hannels between good replias are reliable and authen-tiated, in the sense that a good replia pi reeives a message on the ommuni-



ation hannel from another good replia pj if and only if pj sent that messageto pi.Our work is onerned with the di�usion of updates among the replias.Eah update u is introdued to an initial set Iu ontaining at least � � b goodreplias, and is then di�used to other replias via message passing. Replias in Iuare onsidered ative for u. The goal of a di�usion algorithm is to make all goodreplias ative for u, where a replia p is ative for u only if it an guarantee itsveraity.Our di�usion protools proeed in synhronous rounds. For simpliity, weassume that eah update arrives at eah replia in Iu simultaneously, i.e., in thesame round at eah replia in Iu. This assumption is made purely for simpliityand does not impat on either the orretness or the speed of our protool. Ineah round, eah replia selets one other replia to whih it sends informationabout updates as presribed by the di�usion protool. That is, the Fan-out, F out,is assumed to be 1.2 A replia reeives and proesses all the messages sent to itin a round before the next round starts.We onsider the following three measures of quality for di�usion protools:Delay: For eah update, the delay is the worst-ase expeted number of roundsfrom the time the update is introdued to the system until all good repliasare ative for update. Formally, let �u be the round number in whih updateu is introdued to the system, and let �up be the round in whih a goodreplia p beomes ative for update u. The delay is E[maxp;Cf�up g � �u℄,where the expetation is over the random hoies of the algorithm and themaximization is over good replias p, all failure on�gurations C ontainingfewer than b failures, and all behaviors of those orrupt replias. In partiular,maxp;Cf�up g is reahed when the orrupt replias send no updates, and ourdelay analysis applies to this ase.Fan-in: The fan-in measure, denoted by F in, is the expeted maximum num-ber of messages that any good replia reeives in a single round from goodreplias under all possible failure senarios. Formally, let �ip be the number ofmessages reeived in round i by replia p from good replias. Then the fan-inin round i is E[maxp;Cf�ipg℄, where the maximum is taken with respet toall good replias p and all failure on�gurations C ontaining fewer than bfailures. Amortized fan-in is the expeted maximum number of messages re-eived over multiple rounds, normalized by the number of rounds. Formally,a k-amortized fan-in starting at round l is E[maxp;CfPl+ki=l �ip=kg℄. We em-phasize that fan-in and amortized fan-in are measures only for messages fromgood replias.Communiation omplexity: The maximum amount of information pertain-ing to a spei� update, that was sent by a good replia in a single message.The maximum is taken on all the messages sent (in any round), and withrespet to all good replias and all failure on�gurations C ontaining fewerthan b failures.2 We ould expand the treatment here to relate to F out as a parameter, but hose notto do so for simpliity.



Note that what interests us is the expeted value of the measures. When wemake statements of the type "within an expeted f(r) rounds, P (r)" (for someprediate P , and funtion f), we mean that if we de�ne X as a random variablethat measures the time until P (r) is true then E(X) = f(r).The following bound presents an inherent tradeo� between delay and fan-in for onservative di�usion methods (De�nition 1), when the initial set Iu isarbitrarily designated:Theorem 1 ([MMR99℄). Let there be a onservative di�usion algorithm. De-note by D the algorithm's delay, and by F in its D-amortized fan-in. ThenDF in = 
(bn=�), for b � 2 logn.One ontribution of the present work is to show that the lower bound ofTheorem 1 for onservative di�usion algorithms, does not hold one inativereplias are allowed to partiipate in the di�usion.3 Lower BoundsIn this setion we present lower bounds whih apply to any di�usion method inour setting. Our main theorem sets a lower bound on the delay. It states thatthe propagation time is related linearly to the number of orrupt replias andlogarithmially to the total number of replias.We start by showing the relation between the delay and the number of orruptplayers.Lemma 1. Let there be any di�usion algorithm in our setting. Let D denotethe algorithm's delay. Then D = 
(bn��n ).Proof. Sine it is possible that there are b�1 orrupt replias, eah good repliawho did not reeive the update initially as input must be targeted diretly byat least b di�erent other replias, as otherwise orrupt replias an ause itto aept an invalid update. Sine only � replias reeive the update initially,at least b(n � �) diret messages must be sent. As Fout = 1 and there are nreplias, at most n messages are sent in eah round. Therefore it takes at leastbn��n rounds to have b(n� �) diret messages sent.We now show the relationship of the delay to the number of replias.Lemma 2. Let there be any di�usion algorithm in our setting. Let D denotethe algorithm's delay. Then D = 
(log n� ).Proof. Eah replia has to reeive a opy of the update. Sine Fout = 1, thenumber of replias who reeive the update up to round t is at most twie thenumber of replias who reeived the update up to round t� 1. Therefore at the�nal round tend, when all replias reeived the update, we have that 2tend� = nor tend = log n� .



The following theorem immediately follows from the previous two lemmas:Theorem 2. Let there be any di�usion algorithm in our setting. Let D denotethe algorithm's delay. Then D = 
(bn��n + log n� ).Remark 1. We will deal primarily in the ase where � � n2 as otherwise thedi�usion problem is relatively simple. In partiular, if � > n2 , then we an usethe algorithm of [MMR99℄ to yield delay of O(b), whih is optimal for F out = 1.When � � n2 our lower bound is equal to 
(b + log n� ), whih is met by thepropagation algorithm presented below.Remark 2. We note that in order for an update to propagate suessfully wemust have that � > b. From this, it immediately follows that b < n2 . However,below we shall have a tighter onstraint on b that stems from our di�usionmethod. We note that throughout this paper no attempt is made to optimizeonstants.4 The propagation algorithmIn this setion we present an optimal propagation algorithm that mathes thelower bound shown in setion 3.In our protool, eah replia an be in one of three states for a partiularupdate: passive, hesitant or ative. Eah replia starts o� either in the ativestate, if it reeives the update initially as input, or (otherwise) in the passivestate. In eah round, the ations performed by a replia are determined by itsstate. The algorithm performed in a round onerning a partiular update is asfollows:{ An ative replia hooses a random replia and sends the update to it. (Com-pared with the ations of hesitant replias below, the lak of any paths at-tahed to the update onveys the replia's belief in the update's veraity.){ A passive or hesitant replia p that reeives the update from q, with various(possibly empty) path desriptions attahed, appends q to the end of eahpath and saves the paths. If p was passive, it beomes hesitant.{ A hesitant replia hooses a random replia and sends to it all vertex-minimalpaths of length < log nb over whih the update was reeived.{ A hesitant replia that has b vertex disjoint paths for the update beomesative.A ouple of things are worth noting here. First, it should be lear that the al-gorithm above exeutes simultaneously for all onurrently propagating updates.Seond, any partiular update is propagated by replias for a limited number ofrounds. The purpose of the analysis in the rest of the paper is to determine thenumber of rounds needed for the full propagation of an update. Finally, some



optimizations are possible. For example, a hesitant replia p that has b vertexdisjoint paths passing through a single vertex q (i.e., disjoint between q and p)an unify the paths to be equivalent to a diret ommuniation from the vertexq. We now prove that our algorithm is orret.Lemma 3. If a good replia beomes ative for an update then the update wasinitially input to a good replia.Proof. There are two possible ways in whih a good replia an beome ative foran update. The �rst possibility is when the replia reeives the update initiallyas input. In this ase the laim ertainly holds.The seond possibility is when the replia reeives the update over b vertexdisjoint paths. We say that a orrupt replia ontrols a path if it is the lastorrupt replia in the path. Note that for any invalid update whih was generatedby orrupt replia(s), there is exatly one orrupt replia ontrolling any path(sine by de�nition the update was reated by the orrupt replias). Sine goodreplias follow the protool and do not hange the path(s) they reeived, theorrupt ontrolling replia will not be removed from any path by any subsequentgood replia reeiving the update. As there are less than b orrupt replias andthe paths are vertex disjoint there are less than b suh paths. As a good repliabeomes ative for an update when it reeives the update over b disjoint paths,at least one of the paths has only good replias in it. Therefore the update wasinput to a good replia.The rest of this paper will prove the onverse diretion. If an update wasinitially input to � � b good replias then within a relatively small number ofrounds, all good replias will reeive the update with high probability.5 Performane analysisIn this setion, we proeed to analyze the performane of our algorithm. Ourtreatment is based on a ommuniation graph that gradually evolves in theexeution. We introdue some notation to be used in the analysis below. Atevery round r, the ommuniation graph Gr = (V;Er) is de�ned on (good)verties V suh that there is a (direted) edge between two verties if one sentany message to the other during round r. We denote by NG(I) the neighborhoodof I (singleton or set) in G. We denote by k p; q kG the shortest distane betweenp and q in G. In the analysis below, we use verties and replias interhangeably.Our proof will make use of gossip-irles that gradually evolve around ativereplias. Intuitively, the gossip-irle C(p; d; r) of a good ative replia is the setof good replia that heard the update from p over good paths (omprising goodreplias) of length up to d in r rounds. Formally:



De�nition 2. Let p be some good replia whih is ative for the update u. LetfGj = (V;Ej)gj=1::r be the set of ommuniation graphs of r rounds of theexeution of verties in V . Reall that NG(I) denotes the set of all neighbors ina graph G of nodes in I. We then de�ne gossip irles of p in r rounds indutivelyas follows:CV (p; 0; r) = fpg81 � d � r :CV (p; d; r) = CV (p; d� 1; r) [fq 2 NGd(CV (p; d�1; r)) :k p; q kCV (p;d�1;r)� minfd�1; log nb�1ggWhen V is the set of good replias, we omit it for simpliity. Note that the gos-sip irle C(p; d; r) is onstrained by de�nition to have radius � minfd; log nb g.The idea behind our analysis is that any b initial ative good replias spreadpaths that over disjoint low-diameter gossip-irles of size n4b . Hene, it is suf-�ient for any replia to be diretly targeted by some replia from eah one ofthese sets in order to have b vertex-disjoint paths from initial replias.We �rst show a lemma about the spreading of epidemi style propagationwith bounded path length. Without bounding paths, the analysis redues toepidemi-style propagation for benign environment, as shown in [DGH+87℄.Lemma 4. Let p 2 Iu be a good replia, and let d � log nb . Assume there are noorrupt replias. Then within an expeted r > d rounds, jC(p; d; r)j � minf( 32 )d+(r � d)( 32 )d�4; n2 g.Proof. The proof looks at an exeution of r rounds of propagation in two parts.The �rst part onsists of d rounds. In this part, the set of replias that reeiveda opy of u (equivalently, reeived a opy of u over paths of length � d), growsexponentially. That is, in d rounds, the update propagates to ( 32 )d replias. Theseond part onsists of the remaining r � d rounds. This part makes use of thefat that at the end of the �rst part, an expeted ( 32 )d�4 replias reeive a opy ofu over paths of length < d. Hene, in the seond part, a total of (r� d)� ( 32 )d�4replias reeive u.Formally, let mj denote the number of replias that reeived u from p overpaths of length � d by round j, i.e., mj = jC(p; d; j)j.Let j � d. So long as the number of replias reahed by paths of length � ddoes not already exeed n2 , then in round j +1 eah replia in C(p; d; j) targetsa new replia with probability � 12 . Therefore, the expeted number of messagessent until mj2 new replias are targeted is at most mj . Furthermore, sine at leastmj messages are sent in round j, this ours within an expeted one round. Wetherefore have that the expeted time until ( 32 )d replias reeive u over paths oflength � d is at most d.From round d+ 1 on, we note that at least half of md reeived u over pathsof length stritly less than d. Therefore, in eah round j > d, there are at least12 � ( 32 )d replias forwarding u over paths of length < d. So long as mj � n2 ,then in round j eah of these replias targets a new replia with probability � 12 .Therefore, the expeted number of messages sent until ( 32 )d�4 < 12 � 12 � ( 32 )d



new replias are targeted is at most 12 � ( 32 )d, whih ours in an expeted oneround.Putting the above together, we have that within an expeted r rounds, ( 32 )d+(r � d)� ( 32 )d�4 replias are in C(p; d; r).Sine the hoie of ommuniation edges in the ommuniation graph is madeat random, we get as an immediate orollary:Corollary 1. Let V 0 � V be a set of verties, ontaining all orrupt ones,hosen independently from the hoies of the algorithm, suh that jV 0j � n3 . Letp 2 Iu be a good replia, and let d � log nb . Then within an expeted 3r > drounds, jC(V nV 0)(p; d; 3r)j � minf( 32 )d + (r � d)( 32 )d�4; n2 g.We now use orollary 1 to build b disjoint gossip irles of initial replias, andwish to proeed with the analysis of the number of rounds it takes for repliasto be targeted by these disjoint sets. As edges in the ommuniation graph arebuilt at random, a tempting approah would be to treat this as a simple ouponolletor problem on the b gossip-irles where eah replia wishes to \ollet amember" of eah of these sets by being targeted with an edge from it. With thissimplisti analysis, it would take eah replia O(b log b) rounds to ollet all theoupons, and an additional logarithmi fator in n for all replias to omplete.The resulting analysis would provide an upper bound of O(b(log b)(logn)) onthe delay. Although this is suÆient for small b, for large b we wish to furthertighten the analysis on the number of rounds needed for di�usion.The approah we take is to gradually adapt the size of the disjoint gossip-irles as the proess evolves, and to show that the expeted amount of time untilall sets are onneted to a replia remains onstant. More preisely, we show thatin an expeted O(b) rounds, a replia has edges to half of b gossip-irles of sizen4b . We then look at the ommuniation graph with all of the verties in thepaths of the previous step(s) removed. We show that in time O(b=2), a repliahas edges to gossip-irles of size 2n4b of half of the b2 remaining initial replias.And so on. In general, we have an indutive analysis for k = 0:: log b. For eahk, we denote bk = b2k . For step k of the analysis, we show that in time O(bk), areplia has disjoint paths of length � log nb�bk to bk2 of the initial replias. Hene,in total time O(b), a replia onnets to b initial replias over disjoint paths, allof length � log nb (and hene, not exeeding the algorithm's path limit).Our use of Corollary 1 is as follows. Let bk = b2k , and let V 0 denote a setof verties we wish to exlude from the graph, where jV 0j � n3 . Then we havethat within an expeted 3r = 3(b+ 2 log nb�bk ) rounds, eah initial good repliahas a gossip irle of diameter d = maxf1; 2 log nb�bk g whose size is at least(b+ d� d)( 32 )(d�4) � n4bk .We now use this fat to designate disjoint low-diameter gossip irles aroundb good replias in Iu.



Lemma 5. Let I � Iu be a subset of initial good replias of size bk. Let W 0 be asubset of replias with jW 0j � n12 . Denote by d = maxf1; 2 log nb�bk g. Then withinan expeted 3r = 3(b+ d) rounds there exist disjoint subsets fCigi2I ontainingno verties of W 0, suh that eah Ci � C(V nW 0)(i; d; 3r), and suh that eahjCij = n4bk .Proof. The proof builds these sets for I indutively. Suppose that C1; :::; Ci�1,for 0 < i � bk, have been designated already, suh that for all 1 � j � i � 1,we have that Cj � C(j; d; 3r) and jCj j = n4bk . Denote by C = Sj=1::i�1 Cj .Then the total number of verties in V 0 = C [W 0 is at most n12 + (i� 1) n4bk �n12 + bk n4bk � n3 . From Corollary 1, we get that within an expeted 3r rounds,and without using any vertex in V 0, the gossip irle CV nV 0(i; d; 3r) ontains atleast �b+ 2 log nb�bk � 2 log nb�bk �� 32��2 log nb�bk �4� � n4bk . Hene, we set Ci tobe a subset of C(i; d; 3r) of size n4bk and the lemma follows.We now analyze the delay until a vertex has diret edges to these bk disjointsets.Lemma 6. Let v 2 V be a good replia. Let bk = b2k as before and let fCigi=1::bkbe disjoint sets, eah of size n4bk and diameter 2 log nb�bk (as determined byLemma 5). Then within an expeted 4bk rounds there are edges from bk2 of thesets to v.Proof. The proof is simply a oupon olletor analysis of olleting bk2 out of bkoupons, where in epoh i, for 1 � i � bk2 , the probability of olleting the i'thnew oupon in a round is preisely the probability of v being targeted by a newset, i.e., (bk�i) n4bkn . The expeted number of rounds until ompletion is thereforePi=1::(bk=2) 4bkbk�i � 4bk.We are now ready to put these fats together to analyze the delay that asingle vertex inurs for having disjoint paths to b initial replias.Lemma 7. Let v 2 V be a good replia. Suppose that b < n60 . Then within anexpeted 5(b + log nb ) rounds there are b vertex disjoint paths of length � log nbfrom Iu to v.Proof. We prove by indution on bk = b2k , for k = 0::(log b � 1). To begin theindution, we set b0 = b. By Corollary 1, within an expeted b+2 log nb�b0 stages,there are b0 = b disjoint sets (of radius 2 log nb�b0 ) whose size is n4b0 . By Lemma 6,within 4b0 rounds, v has diret edges to b02 of these sets. Hene, it has disjointpaths of length � 2 log nb�b0 + 1 to b02 initial replias. These paths omprise atmost b02 (2 log nb�b0 + 1) good verties.For step 0 � k < (log b) of the analysis, we set bk = b2k . The set of vertiesused in paths so far, together with all the orrupt verties, total less than



b+Xk0<k bk02 �2 log nb� bk0 + 1� � b+Xk0<k b2k0  log 2k0nb2 + 1! � b+2b(1+log nb2 ) :By our assumption that b < n60 , we get that the total number of vertiesused until step k is less than n12 . Hene, in eah step 0 � k < log b, we applyCorollary 1 to form bk disjoint sets (of radius 2 log nb�bk ) whose size is n4bk eah.By Lemma 6, half of these sets have diret edges to v within an expeted 4bkrounds.In total, we showed that in expeted max0�k<log bf4bk+b+2 log nb�bk g rounds,v has disjoint paths (of length at most log nb ) to b initial replias.We now wish to bound the time when all of the nodes have b vertex disjointpaths to Iu. A tempting approah would be to use a Cherno� bound, but theanalysis would then require an additional logarithmi fator in n. This fatoran be avoided by utilizing the fat that after a O(logn+ b) rounds there exist afration of the replias who are ative for the update. Finally, propagation froma linear set is easily done.Lemma 8. Let  > 1 be a onstant. The expeted time until (n � b) �1� 1�replias beome ative is O(b+ logn).Proof. By Lemma 7, the expeted time for a replia to beome ative is 5(b +log nb ). Hene, the probability that a replia beomes ative in  � 5(b + log nb )rounds or more is less than 1 . Hene, within an expeted � 5(b+log nb ) roundsthe number of ative replias is at least (n� b) �1� 1�.We now hoose a partiular value for  in the previous lemma. We note thatwe hoose an arbitrary value without attempting to minimize the onstants.For  = 2, within an expeted 10(b+log nb ) rounds there are 12 (n�b) repliaswho are ative for the update. By reusing the supposition b < n60 from Lemma 7,we get that 12 (n� b) > 12 (n� n60 ) > 25n. This means that there are at least 25ngood replias who are ative for the update.Lemma 9. If at least 25n good replias are ative for the update then within anexpeted O(b+ logn) rounds all of the replias beome ative for the update.Proof. Fix any replia and let Yi be the number of updates from ative repliasthat the replia reeives in round i. Let Y be the number of updates that thereplia reeives in r rounds, i.e., Y = Pri=1 Yi. By the linearity of expetation,E(Y ) =Pri=1E(Yi) � 25r. Using a Cherno� bound we have that Pr[Y � r10 ℄ �e� r48 . Therefore if r = 48 logn+ 2b we have that Pr[Y � r10 ℄ � 1n2 .Theorem 3. The algorithm terminates in an expeted O(logn+ b) rounds.Proof. By orollary 7, and lemma 8 it follows that within O(logn+b) rounds 0:8of the replias beome ative. From Lemma 9 within an additional O(logn+ b)rounds all of the replias beome ative.



Therefore, our delay mathes the lower bound of theorem 2.We onlude the analysis with a log amortized F in analysis and a ommu-niation omplexity bound. The logn amortized F in of our algorithm as shownin [MMR99℄ is 1.In order to �nish the analysis the ommuniation omplexity (whih alsobounds the required storage size) must be addressed. Eah vertex v 2 V reeivesat most O(b+ log nb ) sets of paths. Paths are of length at most log nb . Therefore,the ommuniation overhead per message an be bounded by O(b+log nb )log nb =(nb )O(log(b+logn)).This ommuniation omplexity an be enfored by good replias even in thepresene of faulty replias. A good replia an simply verify that (a) the lengthof all paths in any inoming message does not exeed log nb , and that (b) theout-degree of any vertex does not exeed O(b + log nb ). Any violation of (a) or(b) indiates that the message was sent by a faulty replia, and an be safelydisarded.6 Conlusions and future workThis paper presented a round-eÆient algorithm for disseminating updates ina Byzantine environment. The protool presented propagates updates withinan expeted O(b + lgn) rounds, whih is shown to be optimal. Compared withprevious methods, the eÆieny here was gained at the ost of an inrease inthe size of messages sent in the protool. Our main diretion for future work isto redue the ommuniation omplexity, whih was ursorily addressed in thepresent work.Referenes[BHO+99℄ K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budio and Y. Minsky.Bimodal multiast. ACM Transations on Computer Systems 17(2):41{88,1999.[BLNS82℄ A. D. Birrell, R. Levin, R. M. Needham, and M. D. Shroeder. Grapevine,An exerise in distributed omputing. Communiations of the ACM25(4):260{274, 1982.[BT85℄ G. Braha and S. Toueg. Asynhronous onsensus and broadast protools.Journal of the ACM 32(4):824{840, Otober 1985.[CL99℄ M. Castro and B. Liskov. Pratial Byzantine fault tolerane. In Proeed-ings of the 3rd Symposium on Operating Systems Design and Implemen-tation, 1999.[CASD95℄ F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomi broadast: Fromsimple message di�usion to Byzantine agreement. Information and Com-putation 18(1), pages 158{179, 1995.[Dee89℄ S. E. Deering. Host extensions for IP multiasting. SRI Network Informa-tion Center, RFC 1112, August 1989.
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