Quorum Systems*

Dahlia Malkhi
AT&T Labs-Research

March 23, 1999

Quorum systems are tools for increasing the availability and efficiency of replicated services.
A quorum system for a universe of servers is a collection of subsets of servers, each pair of which
intersect. Intuitively, each quorum can operate on behalf of the system, thus increasing its availabil-
ity and performance, while the intersection property guarantees that operations done on distinct
quorums preserve consistency.

The motivation for quorum systems stems from the need to make critical missions performed
by machines reliable. The only way to increase the reliability of a service, aside from using in-
trinsically more robust hardware, is via replication. To make a service robust, it can be installed
on multiple identical servers, each one of which holds a copy of the service state and performs
read /write operations on it. This allows the system to provide information and perform operations
even if some machines fail or communication links go down. Unfortunately, replication incurs a
cost in the need to maintain the servers consistent. To enhance the availability and performance
of a replicated service, Gifford and Thomas introduced in 1979 [3,10] the usage of votes assigned
to each server, such that a majority of the sum of votes is sufficient to perform operations. More
generally, quorum systems are defined formally as follows:

Quorum system: Assume a universe U of servers, |U| = n, and an arbitrary number of clients.
A quorum system Q C 2U is a set of subsets of U, every pair of which intersect. Fach Q € Q is
called a quorum.

Access Protocol

To demonstrate the usability of quorum systems in constructing replicated services, quorums are
used here to implement a multi-writer multi-reader atomic shared variable. Quorums have also
been used in various mutual exclusion protocols, to achieve Consensus, and in commit protocols.
In our application, clients perform read and write operations on a variable x that is replicated at
each server in the universe U. A copy of the variable x is stored at each server, along with a times-
tamp value t. Timestamps are assigned by a client to each replica of the variable when the client
writes the replica. Different clients choose distinct timestamps, e.g., by choosing integers appended
with the name of ¢ in the low-order bits. The read and write operations are implemented as follows.

Write: For a client ¢ to write the value v, it queries each server in some quorum () to obtain a set
of value/timestamp pairs A = {(v,, 1) }ueq; chooses a timestamp t € T, greater than the highest

*Chapter in The Encyclopedia of Distributed Computing, Joseph Urban and Partha Dasgupta, editors, Kluwer
Academic Publishers. To be published.

timestamp value in A; and updates # and the associated timestamp at each server in @ to v and
t, respectively.

Read: For a client to read =z, it queries each server in some quorum () to obtain a set of
value/timestamp pairs A = {(vy, t,)}ueg. The client then chooses the pair (v,t) with the highest
timestamp in A to obtain the result of the read operation. It writes back (v,?) to each server in
some quorum Q.

In both read and write operations, each server updates its local variable and timestamp to the
received values (v,t) only if ¢ is greater than the timestamp currently associated with the vari-
able. The above protocol correctly implements the semantics of a multi-writer multi-reader atomic
variable (see Linearizability, Sequential Consistency).

Quorum Constructions

Perhaps the two most obvious quorum systems are the singleton, and the set of majorities, or more
generally, weighted majorities suggested by Gifford [3].

Singleton: The set system Q = {{u}} for some u € U is the singleton quorum system.

Weighted Majorities: Assume that every server s in the universe U is assigned a number of

votes w,. Then, the set system Q = {Q C U : D geq Wq > @} is a quorum system called

Weighted Majorities. When all the weights are the same, simply call this the system of Majorities.
An example of a quorum system that cannot be defined by voting is the following Grid construction:

Grid: Suppose that the universe of servers is of size n = k? for some integer k. Arrange the
universe into a \/n X y/n grid, as shown in Figure 1. A quorum is the union of a full row and one
element from each row below the full row. This yields the Grid quorum system, whose quorums

are of size O(y/n).

Figure 1: The Grid quorum system of 6 x 6, with one quorum shaded

Maekawa suggests in [4] a quorum system that has several desirable symmetry properties, and
in particular, that every pair of quorums intersect in exactly one element:

FPP: Suppose that the universe of servers is of size n = ¢*> + ¢+ 1, where ¢ = p” for a prime p. It
is known that a finite projective plane exists for n, with ¢ + 1 pairwise intersecting subsets, each

subset of size ¢ + 1, and where each element is contained in ¢ + 1 subsets. Then the set of finite
projective plane subsets forms a quorum system.

Voting and Related notions

Since generally it would be senseless to access a large quorum if a subset of it is a quorum, we want
to focus on quorum systems that do not contain such anomalies. Garcia-Molina and Barbara [2]
call such well formed systems coteries, defined as follows:

Coterie: A coterie Q C 2 is a quorum system such that for any Q,Q' € Q: Q Z Q'.

Of special interest are quorum systems that cannot be reduced in size (i.e., that no quorum in
the system can be reduced in size). Garcia-Molina and Barbara [2] use the term “dominates” to
mean that one quorum system is always superior to another, as follows:

Domination: Suppose that Q, Q" are two coteries, @ # Q’, such that for every Q' € Q’, there
exists a) € Q such that Q C @’. Then Q dominates Q'. Q' is dominated if there exists a coterie
Q that dominates it, and is non-dominated if no such coterie exists.

Voting was mentioned above as an intuitive way of thinking about quorum techniques. As it
turns out, vote assignments and quorums are not equivalent. Garcia-Molina and Barbara [2] show
that quorum systems are strictly more general than voting, i.e. each vote assignment has some
corresponding quorum system but not the other way around. In fact, for a system with n servers,
there is a double-exponential (227) number of non-dominated coteries, and only O(2%") different
vote assignments, though for n < 5, voting and non-dominated coteries are identical.

Measures

Several measures of quality have been identified to address the question of which quorum system
works best for a given set of servers; among these, we elaborate on load and availability.

Load

A measure of the inherent performance of a quorum system is its load. Naor and Wool define in
[7] the load of a quorum system as the probability of accessing the busiest server in the best case.
More precisely, given a quorum system Q, an access strategy w is a probability distribution on the
elements of Q;i.e., 3 pcow(@) = 1. w(Q) is the probability that quorum @ will be chosen when
the service is accessed. Load is then defined as follows:

Load: Let a strategy w be given for a quorum system Q = {Qy,...,Q.,} over a universe U. For
an element u € U, the load induced by w on u is l,,(u) = 35,5, w(@;). The load induced by a
strategy w on a quorum system Q is

L.,(Q) = max{l,(u)}.

uelU

The system load (or just load) on a quorum system Q is

L(Q) = min{L,(Q)},

where the minimum is taken over all strategies.

The load is a best case definition, and will be achieved only if an optimal access strategy is
used, and only in the case that no failures occur. A strength of this definition is that load is a
property of a quorum system, and not of the protocol using it.

The following theorem was proved in [7] for all quorum systems.

Theorem: Let Q be a quorum system over a universe of n elements. Denote by ¢(Q) the size of

the smallest quorum of Q. Then L(Q) > max{ﬁ, c(ng)}. Consequently, L(Q) > \/Lﬁ

Availability

The resilience f of a quorum system provides one measure of how many crash failures a quorum
system is guaranteed to survive.

Resilience: The resilience f of a quorum system Q is the largest k such that for every set K C U,
K| =k, there exists Q € Q such that K N@Q = 0.

Note that, the resilience f is at most ¢(Q) — 1, since by disabling the members of the smallest
quorum every quorum is hit. It is possible, however, that an f-resilient quorum system, though
vulnerable to a few failure configurations of f+ 1 failures, can survive many configurations of more
than f failures. One way to measure this property of a quorum system is to assume that each server
crashes independently with probability p and then to determine the probability Fj, that no quo-
rum remains completely alive. This is known as failure probability and is formally defined as follows:

Failure probability: Assume that each server in the system crashes independently with probabil-
ity p. For every quorum) € Q let &g be the event that () is hit, i.e., at least one element 7 €) has
crashed. Let crash(Q) be the event that all the quorums @ € Q were hit, i.e., crash(Q) = Ageo €o-
Then the system failure probability is I,(Q) = Pr(crash(Q)).

Peleg and Wool study the availability of quorum systems in [8]. A good failure probability F,(Q)
for a quorum system Q has lim,, ., F,(Q) = 0 when p < % Note that, the failure probability of
any quorum system whose resilience is f is at least e~(/). Majorities has the best availability
when p < %; for p = %, there exist quorum constructions with F,(Q) = %; for p > %, the singleton
has the best failure probability F,(Q) = p, but for most quorum systems, F},(Q) tends to 1.

The load and availability of quorum systems

Quorum constructions can be compared by analyzing their behavior according to the above mea-
sures. The singleton has a load of 1, resilience 0, and failure probability F}, = p. This system has
the best failure probability when p > %, but otherwise performs poorly in both availability and
load.

The system of Majorities has a load of |
—Q(n)

2] & 1. It is resilient to [251 | failures, and its failure
probability is e . This system has the highest possible resilience and asymptotically optimal
failure probability, but poor load.

Grid’s load is O(ﬁ)7 which is within a constant factor from optimal. However, its resilience is

only v/n — 1 and it has poor failure probability which tends to 1 as n grows.

The resilience of a FPP quorum system is ¢ & /n. The load of FPP was analyzed in [7] and
shown to be L(FPP) = q;';—l ~ 1/+/n, which is optimal. However, its failure probability tends to 1
as n grows.

As demonstrated by these systems, there is a tradeoff between load and fault tolerance in quorum
systems, where the resilience f of a quorum system Q satisfies f < nl(Q). Thus, improving one
must come at the expense of the other, and it is in fact impossible to simultaneously achieve both
optimally. One might conclude that good load conflicts with low failure probability, which is not
necessarily the case. In fact, there exist quorum systems such as the Paths system of Naor and
Wool [7] and the Triangle Lattice of Bazzi [1] that achieve asymptotically optimal load of O(1//n)
and have close to optimal failure probability for their quorum sizes. Another construction is the
CWlog system of Peleg & Wool [9], which has unusually small quorum sizes of logn — loglogn,
and for systems with quorums of this size, has optimal load, L(CWlog) = O(1/logn), and optimal
failure probability.

Byzantine quorum systems

For the most part, quorum systems were studied in environments where failures may simply cause
servers to become unavailable (benign failures). But what if a server may exhibit arbitrary, possibly
malicious behavior? Malkhi and Reiter [5] initiate the study of quorum systems in environments
prone to arbitrary (Byzantine) behavior of servers. Intuitively, a quorum system tolerant of Byzan-
tine failures is a collection of subsets of servers, each pair of which intersect in a set containing
sufficiently many correct servers to mask out the behavior of faulty servers. More precisely, Byzan-
tine quorum systems are defined as follows:

Masking quorum system: A quorum system Q is a b-masking quorum system if it has resilience
f > b, and each pair of quorums intersect in at least 2b + 1 elements.

The masking quorum system requirements enable a client to obtain the correct answer from the
service despite up to b Byzantine server failures. More precisely, a write operation remains as before;
to obtain the correct value of from a read operation, the client reads a set of value/timestamp pairs
from a quorum Q) and sorts them into clusters of identical pairs. It then chooses a value/timestamp
pair that is returned from at least b 4+ 1 servers, and therefore must contain at least one correct
server. The properties of masking quorum systems guarantee that at least one such cluster exists. If
more than one such cluster exists, the client chooses the one with the highest timestamp. It is easy
to see that any value so obtained was written before, and moreover, that the most recently written
value is obtained. Thus, the semantics of a multi-writer multi-reader safe variable are obtained (see
Linearizability, Sequential Consistency) in a Byzantine environment.

For a b-masking quorum system, the following lower bound on the load holds:

2b+1 ¢(Q)
c(Q)’ n

Theorem: Let Q be a b-masking quorum system. Then L(Q) > max{

quently L(Q) > /2L,

This bound is tight, and masking quorum constructions meeting it were shown.

Malkhi and Reiter explore in [5] two variations of masking quorum systems. The first, called
dissemination quorum systems, is suited for services that receive and distribute self-verifying infor-
mation from correct clients (e.g., digitally signed values) that faulty servers can fail to redistribute

}, and conse-

but cannot undetectably alter. The second variation, called opaque masking quorum systems, is
similar to regular masking quorums in that it makes no assumption of self-verifying data, but it
differs in that clients do not need to know the failure scenarios for which the service was designed.
This somewhat simplifies the client protocol and, in the case that the failures are maliciously in-
duced, reveals less information to clients that could guide an attack attempting to compromise the
system. It is also shown in [5] how to deal with faulty clients in addition to faulty servers.

Probabilistic quorum systems

The resilience of any quorum system is bounded by half of the number of servers. Moreover, as
mentioned above, there is an inherent tradeoff between low load and good resilience, so that it is
in fact impossible to simultaneously achieve both optimally. In particular, quorum systems over n
servers that achieve the optimal load of \/Lﬁ can tolerate at most /n faults.

To break these limitations, Malkhi et al. propose in [6] to relax the intersection property of a
quorum system so that “quorums” chosen according to a specified strategy intersect only with very
high probability. They accordingly name these probabilistic quorum systems. These systems admit
the possibility, albeit small, that two operations will be performed at non-intersecting quorums, in
which case consistency of the system may suffer. However, even a small relaxation of consistency can
yield dramatic improvements in the resilience and failure probability of the system, while the load
remains essentially unchanged. Probabilistic quorum systems are thus most suitable for use when
availability of operations despite the presence of faults is more important than certain consistency.
This might be the case if the cost of inconsistent operations is high but not irrecoverable, or if
obtaining the most up-to-date information is desirable but not critical, while having no information
may have heavier penalties.

The family of constructions suggested in [6] is as follows:

W(n,{): Let U be a universe of size n. W(n, (), £ > 1, is the system (Q,w) where Q is the set
system Q@ ={Q C U : |Q|={y/n}; wis an access strategy w defined by VQ) € Q, w(Q) = o[

The probability of choosing according to w two quorums that do not intersect is less than €_Z27

. 1

and can be made sufficiently small by appropriate choice of £. Since every element is in <Z\7}E—1>
quorums, the load L(W(n,()) is % = O(ﬁ) Because only £1/n servers need be available in order
for some quorum to be available, W(n, () is resilient to n — ¢y/n crashes. The failure probability
of W(n, () is less than e forall p < 1— \/Lﬁ, which is asymptotically optimal. Moreover, if
% <p<l1- %, this probability is provably better than any (non-probabilistic) quorum system.

Relaxing consistency can also provide dramatic improvements in environments that may expe-
rience Byzantine failures. More details can be found in [6].

References

1. R. Bazzi. Planar quorums. In Proc. 10’th Inter. Workshop on Dist. Algorithms (WDAG),
Bologna, Italy, pages 251-268, October 1996.

2. H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. Journal of
the ACM, 32(4):841-860, 1985.

10.

. D. K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th ACM Symposium
on Operating Systems Principles, pages 150-162, 1979.

M. Maekawa. A /n algorithm for mutual exclusion in decentralized systems. ACM Trans.
of Computer Systems, 3(2):145-159, 1985.

D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing 11(4):203-213,
1998.

D. Malkhi, M. Reiter, and R. Wright. Probabilistic quorum systems. In Proceedings of
the 16th ACM Symposium on Principles of Distributed Computing (PODC), pages 267273,
August 1997.

M. Naor and A. Wool. The load, capacity and availability of quorum systems. In Proceedings
of the 35th IEEFE Symposium on Foundations of Computer Science (FOCS), pages 214-225,
1994. To appear in SIAM Journal of Computing, 1998.

D. Peleg and A. Wool. The availability of quorum systems. Information and Computation,
123(2):210-223, 1995.

D. Peleg and A. Wool. Crumbling walls: A class of practical and efficient quorum systems.
Distributed Computing, 10(2):87-98, 1997.

R. H. Thomas. A majority consensus approach to concurrency control for multiple copy
databases. ACM Transactions on Database Systems 4(2):180-209, 1979.

