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Abstract
Consensus and State Machine Replication (SMR) are generally considered to be equivalent

problems. In certain system models, indeed, the two problems are computationally equivalent:
any solution to the former problem leads to a solution to the latter, and vice versa.

In this paper, we study the relation between consensus and SMR from a complexity perspect-
ive. We find that, surprisingly, completing an SMR command can be more expensive than solving
a consensus instance. Specifically, given a synchronous system model where every instance of
consensus always terminates in constant time, completing an SMR command does not necessar-
ily terminate in constant time. This result naturally extends to partially synchronous models.
Besides theoretical interest, our result also corresponds to practical phenomena we identify em-
pirically. We experiment with two well-known SMR implementations (Multi-Paxos and Raft)
and show that, indeed, SMR is more expensive than consensus in practice. One important im-
plication of our result is that—even under synchrony conditions—no SMR algorithm can ensure
bounded response times.
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1 Introduction

Consensus is a fundamental problem in distributed computing. In this problem, a set of
distributed processes need to reach agreement on a single value [32]. Solving consensus is one
step away from implementing State Machine Replication (SMR) [31, 49]. Essentially, SMR
consists of replicating a sequence of commands—often known as a log—on a set of processes
which replicate the same state machine. These commands represent the ordered input to
the state machine. SMR has been successfully deployed in applications ranging from storage
systems, e.g., LogCabin built on Raft [43], to lock [13] and coordination [27] services. At
a high level, SMR can be viewed as a sequence of consensus instances, so that each value
output from an instance corresponds to a command in the SMR log.

© Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and Dragos-Adrian Seredinschi;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 7; pp. 7:1–7:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karolos.antoniadis@epfl.ch
mailto:rachid.guerraoui@epfl.ch
mailto:dmalkhi@vmware.com
mailto:dragos-adrian.seredinschi@epfl.ch
http://dx.doi.org/10.4230/LIPIcs.DISC.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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From a solvability standpoint and assuming no malicious behavior, SMR can use consensus
as a building block. When the latter is solvable, the former is solvable as well (the reverse
direction is straightforward). Most previous work in this area, indeed, explain how to build
SMR assuming a consensus foundation [21, 33, 36], or prove that consensus is equivalent
from a solvability perspective with other SMR abstractions, such as atomic broadcast [14, 42].
An important body of work also studies the complexity of individual consensus instances [22,
28, 35, 47]. SMR is typically assumed to be a repetition of infinitely many consensus
instances [29, 34] augmented with a reliable broadcast primitive [14], so at first glance it
seems that the complexity of an SMR command can be derived from the complexity of the
underlying consensus. We show that this is not the case.

In practice, SMR algorithms can exhibit irregular behavior, where some commands
complete faster than others [12, 40, 54]. This suggests that the complexity of an SMR
command can vary and may not necessarily coincide with the complexity of consensus.
Motivated by this observation, we study the relation between consensus and SMR in terms
of their complexity. To the best of our knowledge, we are the first to investigate this
relation. In doing so, we take a formal, as well as a practical (i.e., experimental) approach.
Counter-intuitively, we find that SMR is not necessarily a repetition of consensus instances.

We show that completing an SMR command can be more expensive than solving a
consensus instance. Constructing a formalism to capture this result is not obvious. We
prove our result by considering a fully synchronous system, where every consensus instance
always completes in a constant number of rounds, and where at most one process in a round
can be suspended (e.g., due to a crash or because of a network partition). A suspended
process in a round is unable to send or deliver any messages in that round. Surprisingly,
in this system model, we show that it is impossible to devise an SMR algorithm that can
complete a command in constant time, i.e., completing a command can potentially require a
non-constant number of rounds. We also discuss how this result applies in weaker models, e.g.,
partially synchronous, or if more than one process is suspended per round (see Section 3.2).

At a high level, the intuition behind our result is that a consensus instance “leaks,”
so that some processing for that instance is deferred for later. Simply put, even if a
consensus instance terminates, some protocol messages belonging to that instance can remain
undelivered. Indeed, consensus usually builds on majority quorum systems [51], where a
majority of processes is sufficient and necessary to reach agreement; any process which is not
in this majority may be left out. Typically, undelivered messages are destined to processes
which are not in the active majority—e.g., because they are slower, or they are partitioned
from the other processes. Such a leak is inherent to consensus: the instance must complete
after gathering a majority, and should not wait for additional processes. If a process is not
in the active majority, that process might as well be faulty, e.g., permanently crashed.

In the context of an SMR algorithm, when successive consensus instances leak, the same
process can be left behind across multiple SMR commands; we call this process a straggler.
Consequently, the deferred processing accumulates. It is possible, however, that this straggler
is in fact correct. This means that eventually the straggler can become part of the active
quorum for a command. This can happen when another process fails and the quorum must
switch to include the straggler. When such a switch occurs, the SMR algorithm might not
be able to proceed before the straggler recovers the whole chain of commands that it misses.
Only after this recovery completes can the next consensus instance (and SMR command)
start. Another way of looking at our result is that a consensus instance can neglect stragglers,



AGMS 7:3

whereas SMR must deal with the potential burden of helping stragglers catch-up.1
We experimentally validate our result in two well-known SMR systems: a Multi-Paxos

implementation (LibPaxos [4]) and a Raft implementation (etcd [2]). Our experiments
include the wide-area and clearly demonstrate the difference in complexity, both in terms of
latency and number of messages, between a single consensus instance and an SMR command.
Specifically, we show that even if a single straggler needs to be included in an active quorum,
SMR performance noticeably degrades. It is not unlikely for processes to become stragglers in
practical SMR deployments, since these algorithms typically run on commodity networks [7].
These systems are subject to network partitions, processes can be slow or crashed, and
consensus-based implementations can often be plagued with corner-cases or implementation
issues [9, 13, 25, 30], all of which can lead to stragglers.

Our contribution in this paper is twofold. First, we initiate the study of the relation, in
terms of complexity, between consensus and SMR. We devise a formalism to capture the
difference in complexity between these two problems, and use this formalism to prove that
completing a single consensus instance is not equivalent to completing an SMR command
in terms of their complexity (i.e., number of rounds). More precisely, we prove that it is
impossible to design an SMR algorithm that can complete a command in constant time,
even if consensus always completes in constant time. Second, we experimentally validate our
theoretical result using two SMR systems in both a single-machine and a wide-area network.

Roadmap. The rest of this paper is organized as follows. We describe our system model
in Section 2. In Section 3 we present our main result, namely that no SMR algorithm can
complete every command in a constant number of rounds. Section 4 presents experiments to
support our result. We describe the implications of our result in Section 5, including ways to
circumvent it and a trade-off in SMR. Finally, Section 6 concludes the paper.

2 Model

This paper studies the relation in terms of complexity between consensus and State Machine
Replication (SMR). In this section we formulate a system model that enables us to capture
this relation, and also provide background notions on consensus and SMR.

We consider a synchronous model and assume a finite and fixed set of processes Π =
{p1, p2, . . . , pn}, where |Π| = n ≥ 3. Processes communicate by exchanging messages. Each
message is taken from a finite set M = {m1, . . . }, where each message has a positive and a
bounded size, which means that there exists a B ∈ N+ such that ∀m ∈M, 0 < |m| ≤ B.

A process is a state machine that can change its state as a consequence of delivering
a message or performing some local computation. Each process has access to a read-only
global clock, called round number, whose value increases by one on every round. In each
round, every process pi: (1) sends one message to every other process pj 6= pi (in total pi

sends n − 1 messages in each round);2 (2) delivers any messages sent to pi in that round;
and (3) performs some local computation.

An algorithm in such a model is the state machine for each process and its initial
state. A configuration corresponds to the internal state of all processes, as well as the
current round number. An initial configuration is a configuration where all processes are

1 We note that this leaking property seems not only inherent in consensus, but in any equivalent replication
primitive, such as atomic broadcast.

2 As a side note, if a process pi does not have something to send to process pj in a given round, we simply
assume that pi sends an empty message.
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in their initial state and the round number is one. In each round, up to n(n− 1) messages
are transmitted. More specifically, we denote a transmission as a triplet (p, q,m) where
p, q ∈ Π(p 6= q) and m ∈ M . For instance, transmission (pi, pj ,mi,j) captures the sending
of message mi,j from process pi to process pj . We associate with each round an event,
corresponding to the set of transmissions which take place in that round; we denote this event
by τ ⊆ {(pi, pj ,mi,j) : i, j ∈ {1, . . . , n} ∧ i 6= j}. An execution corresponds to an alternating
sequence of configurations and events, starting with an initial configuration. An execution
e+ is called an extension of a finite execution e if e is a prefix of e+. Given a finite execution
e, we denote with E(e) the set of all extensions of e. We assume deterministic algorithms:
the sequence of events uniquely defines an execution.

Failures. Our goal is to capture the complexity—i.e., cost in terms of number of synchronous
rounds—of a consensus instance and of an SMR command, and expose any differences in
terms of this complexity. Towards this goal, we introduce a failure mode which omits all
transmissions to and from at most one process per round.

We say that a process pi is suspended in round r associated with the event τ , if ∀m ∈M and
∀j ∈ {1, . . . , n} with j 6= i, (pi, pj ,m) /∈ τ and (pj , pi,m) /∈ τ , hence |τ | = n(n−1)−2(n−1) =
(n − 1)(n − 2). If a process pi is not suspended in a round r, we say that pi is correct in
round r. In a round associated with an event τ where all processes are correct there are no
omissions, hence |τ | = n(n− 1). A process pi is correct in a finite execution e if there is a
round in e where pi is correct. Process pi is correct in an infinite execution e if there are
infinitely many rounds in e where pi is correct. For our result, it suffices that in each round
a single process is suspended. Note that each round in our model is a communication-closed
layer [18], so messages omitted in a round are not delivered in any later round.

A suspended process represents a scenario where a process is slowed down. This may
be caused by various real-world conditions, e.g., a transient network disconnect, a load
imbalance, or temporary slowdown due to garbage collection. In all of these, after a short
period, connections are dropped and message buffers are reclaimed; such conditions can
manifest as message omissions. The notion of being suspended also represents a model where
processes may crash and recover, where any in-transit messages are typically lost.

There is a multitude of work [3, 44, 45, 47, 48] on message omissions (e.g., due to link
failures) in synchronous models. Our system model is based on the mobile faults model [44].
Note however that our model is stronger than the mobile faults model, since we consider that
either exactly zero or exactly 2(n − 1) message omissions occur in a given round.3 Other
powerful frameworks, such as layered analysis [41], the heard-of model [15], or RRFD [20]
can be used to capture omission failures, but we opted for a simpler approach that can
specifically express the model which we consider.

2.1 Consensus
In the consensus problem, processes have initial values which they propose, and have to
decide on a single value. Consensus [10] is defined by three properties: validity, agreement,
and termination. Validity requires that a decided value was proposed by one of the processes,
whilst agreement asks that no two processes decide differently. Finally, termination states
that every correct process eventually decides. In the interest of having an “apples to apples”
comparison with SMR commands (defined below, Section 2.2), we introduce a client (e.g.,
learner in Paxos terminology [33]), and say that a consensus instance completes as soon

3 If a process p is suspended, then n − 1 messages sent by p and n − 1 messages delivered to p are omitted.



AGMS 7:5

as the client learns about the decided value. This client is not subject to being suspended,
and after receiving the decided value, the client broadcasts this value to the other processes.
Algorithm 1 is a consensus algorithm based on this idea.

It is easy to see that in such a model consensus completes in two rounds: processes
broadcast their input, and every process uses some deterministic function (e.g., maximum)
to decide on a specific value among the set of values it delivers. Since all processes deliver
exactly the same set of n− 1 (or n) values, they reach agreement. In the second round, all
processes send their decided value (a process that was suspended in the first round might send
⊥) to all the other processes, including the client. Since n ≥ 3 and at least n− 1 processes
are correct in the second round, the client delivers the decided value (i.e., a value that is
not ⊥) and thus the consensus instance completes by the end of round two. Afterwards
(starting from the third round), the client broadcasts the decided value to all the processes,
so eventually every correct process decides, satisfying termination. Note that if a process is
suspended in the first round (but correct in the second round), it will decide in the second
round, after delivering the decided value from some other process. Algorithm 1 represents
this solution in which the red and blue lines correspond to the synchronous model’s send
and deliver actions respectively.

We remark that Algorithm 1 does not contradict the lossy link impossibility result of
Santoro and Widmayer [44], even though our model permits more than n − 1 message
omissions in a round, since the model we consider is stronger.

Algorithm 1 Consensus
1: procedure Propose(pi, vi) . pi proposes value vi

2: decision←⊥
3: . round 1
4: ∀p ∈ Π \ {pi}, send(p, vi) . Π is the set of processes
5: values← {vi} ∪ { each value v delivered from process p (∀p ∈ Π \ {pi}) }
6: if |values| 6= 1 then . pi is correct in round 1
7: decision ← deterministicFunction(values)
8: else . pi was suspended
9: . pi cannot decide yet

10: . round k (k ≥ 2): consensus instance completes in round 2
11: ∀p ∈ (Π \ {pi}) ∪ {client}, send(p, decision) . broadcast decided value
12: values← {decision} ∪ { each decision d delivered from process p (∀p ∈ Π \ {pi}) }
13: decision← d where d ∈ values and d 6=⊥

We emphasize that although correct processes can decide in the first round, we consider
that the consensus instance completes when the client delivers the decided value. Hence, the
consensus instance in Algorithm 1 completes in the second round. In more practical terms,
this consensus instance has a constant cost.

2.2 State Machine Replication
The SMR approach requires a set of processes (i.e., replicas) to agree on an ordered sequence
of commands [31, 49]. We use the terms replica and process interchangeably. Informally,
each replica has a log of the commands it has performed, or is about to perform, on its copy
of the state machine.

Log. Each replica is associated with a sequence of decided and known commands which

DISC 2018
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we call the log. The commands are taken from a finite set C = {c1, . . . , ck}. We denote
the log with `(e, p) where e is a finite execution, p is a replica, and each element in `(e, p)
belongs to the set C ∪ {ε}. Specifically, `(e, p) corresponds to commands known by replica
p after all the events in a finite execution e have taken place (e.g., `(e, p) = ci1 , ε, ci3). For
1 ≤ i ≤

∣∣`(e, p)∣∣, we denote with `(e, p)i the i-th element of sequence `(e, p). If there is an
execution e and ∃p ∈ Π and ∃i ∈ N+ such that `(e, p)i = ε, this means that replica p does
not have knowledge of the command for the i-th position in its log, while at least one replica
does have knowledge of this command (i.e., ∃p′ 6= p ∈ Π : `(e, p′)i 6= ε). We assume that
if a process knows about a command c, then c exists in `(e, p). To keep our model at a
high-level, we abstract over the details of how each command appears in the log of each
replica, since this is typically algorithm-specific. Additionally, state-transfer optimizations or
snapshotting [43] are orthogonal to our discussion.

An SMR algorithm is considered valid if the following property is satisfied for any finite exe-
cution e of that algorithm: ∀p, p′ ∈ Π and for every i such that 1 ≤ i ≤ min(

∣∣`(e, p)∣∣ ,∣∣`(e, p′)∣∣),
if `(e, p)i 6= `(e, p′)i then either `(e, p)i = ε or `(e, p′)i = ε. In other words, consider a replica
p which knows a command for a specific log position i, i.e., `(e, p)i = ck, where ck ∈ C.
Then for the same log position i, any other process p′ can either know command ck (i.e.,
`(e, p′)i = ck), not know the command (i.e., `(e, p′)i = ε), or have no information regarding
the command (i.e.,

∣∣`(e, p′)∣∣ < i). In this paper, we only consider valid SMR algorithms.
In what follows, we define what it means for a replica to be a straggler, as well as how

replicas first learn about commands.

Stragglers. Intuitively, stragglers are replicas that are missing commands from their log.
More specifically, let L be maxp |`(e, p)|. We say that q is a k-straggler if the number of non-ε
elements in `(e, q) is at most L− k. A replica p is a straggler in an execution e if there exists
a k ≥ 1 such that p is a k-straggler. Otherwise, we say that the replica is a non-straggler.
A replica that is suspended for a number of rounds could potentially miss commands and
hence become a straggler.

Client. Similar to the consensus client, there is a client process in SMR as well. In SMR,
however, the client proposes commands. The client acts like the (n+ 1)-th replica in a system
with n replicas and its purpose is to supply one command to the SMR algorithm, wait until
it receives (i.e., delivers) a response for the command it sent, then send another command,
etc. A client, however, is different from the other replicas, since an SMR algorithm has no
control over the state machine operating in the client and the client is never suspended. A
client operates in lock-step4 as follows:

sends a command c ∈ C to all the n replicas in some round r;
waits until some replica responds to the client’s command (i.e., the response of applying
the command).5

A replica p can respond to a client command c only if it has all commands preceding c in
its log. This means that ∃i : `(e, p)i = c and ∀j < i, `(e, p)j 6= ε. We say that the client is
suggesting a command c at a round r if the client sends a message containing command c
to all the replicas in round r. Similarly, we say that a client gets a response for command

4 Clients need not necessarily operate in lock-step, but can employ pipelining, i.e., can have multiple
commands outstanding. Practical systems employ pipelining [2, 4, 43], and we account for this aspect
later in our practical experiments of Section 4.

5 We consider that a command is applied instantaneously on the state machine (i.e., execution time for
any command is zero).
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c at a round r if some replica sends a message to the client containing the response of the
command c in round r.

SMR Algorithm. Algorithm 1 shows that consensus is solvable in our model. It seems
intuitive that SMR is solvable in our model as well. To prove that this is the case, we
introduce an SMR algorithm. Roughly speaking, this algorithm operates as follows. Each
replica contains an ordered log of decided commands. A command is decided for a specific log
position by executing a consensus instance similar to Algorithm 1. The SMR algorithm takes
care of stragglers through the use of helping. Specifically, each replica tries to help stragglers
by sending commands which the straggler might be missing. Due to space constraints, we
defer the detailed description and the proof of the SMR algorithm, which can be seen as a
contribution in itself, to our corresponding technical report [5]. As we show next (Section 3),
no SMR algorithm can respond to a client in a finite number of rounds. Hence, even with
helping, our SMR algorithm cannot guarantee a constant response either. Finally, note that
our definition of a valid SMR algorithm does not include a liveness property since this is
not needed for our result. Nevertheless, the SMR algorithm we propose guarantees that if a
client suggests a command, then the client eventually gets a response.

3 Complexity Lower Bound on State Machine Replication

We now present the main result of our paper. Roughly speaking, we show that there is no
State Machine Replication (SMR) algorithm that can always respond to a client in a constant
number of rounds. We also discuss how this result extends beyond the model of Section 2.

3.1 Complexity Lower Bound
We briefly describe the idea behind our result. We observe that there is a bounded number
of commands that can be delivered by a replica in a single round, since messages are of
bounded size, a practical assumption (Lemma 1). Using this observation, we show that
in a finite execution e, if each replica pi is missing βi commands, then an SMR algorithm
needs Ω(mini βi) rounds to respond to at least one client command suggested in an extension
e+ ∈ E(e) (Lemma 2). Finally, for any r ∈ N+, we show how to construct an execution e
where each replica misses enough commands in e, so that a command suggested by a client
in an extension e+ ∈ E(e) cannot get a response in less than r rounds (Theorem 3). Hence,
no SMR algorithm in our model can respond to every client command in a constant number
of rounds.

I Lemma 1. A single replica can deliver up to a bounded number (that we denote by Ψ) of
commands in a round.

Proof. Since any message m is of bounded size B (∀m ∈ M,|m| ≤ B), the number of
commands message m can contain is bounded. Let us denote with ψ the maximum number
of commands any message can contain. Since the number of commands that can be contained
in one message is at most ψ, a replica can transmit at most ψ commands to another replica
in one round. Therefore, in a given round a replica can deliver from other replicas up to
Ψ = (n− 1)ψ commands. In other words, a replica cannot recover faster than Ψ commands
per round. J

I Lemma 2. For any finite execution e, if each replica pi is a βi-straggler (i.e., pi misses βi

commands), then there is a command suggested by the client in some execution e+ ∈ E(e)
such that we need at least dmini(βi/Ψ)e rounds to respond to it.

DISC 2018



7:8 State Machine Replication is More Expensive Than Consensus

Proof. Consider an execution e+ ∈ E(e) such that in a given round r, a client suggests to
all replicas a command c, where round r exists in e+ but does not exist in e. This implies
that replicas are not yet aware of command c in e, so command c should appear in a log
position i where i is greater than maxp

∣∣`(e, p)∣∣. In order for a replica to respond to the
client’s command c, the replica first needs to have all the commands preceding c in its log.
For this to happen, some replica needs to get informed about βi commands. Note that from
Lemma 1, a replica can only deliver Ψ commands in a round. Therefore, a replica needs at
least dβi/Ψe rounds to get informed about the commands it is missing (i.e., recover), and
hence we need at least dmini(βi/Ψ)e rounds for the client to get a response for c. J

p1

p2
. . .

pn

a1 a2 . . . an

Figure 1 Constructed execution of Theorem 3. Red dashed lines correspond to rounds where a
replica is suspended. Replica p1 is suspended for a1 rounds, replica p2 for a2 rounds, etc.

I Theorem 3. For any r ∈ N+ and any SMR algorithm with n replicas (n ≥ 3), there exists
an execution e, such that a command c which the client suggests in some execution e+ ∈ E(e)
cannot get a response in less than r rounds.

Proof. Assume by contradiction that, given an SMR algorithm, each command suggested by
a client needs at most a constant number of rounds k to get a response. Since we can get a
response to a command in at most k rounds, we can make a replica “miss” any number of
commands by simply suspending it for an adequate amount of rounds.

To better convey the proof we introduce the notion of a phase. A phase is a conceptual
construct that corresponds to a number of contiguous rounds in which a specific replica is
suspended. Specifically, we construct an execution e consisting of n phases. Figure 1 conveys
the intuition behind this execution. In the i-th phase, replica pi is suspended for αi rounds,
and αi 6= αj for i 6= j. The idea is that after the n-th phase, each replica is a straggler
and needs more than k rounds to become a non-straggler and be able to respond to a client
command suggested in a round o, where o exists in e+ but not in e. We start from the n-th
phase, going backwards. In the n-th phase, we make replica pn miss enough commands, say
βn. In general, the number βn of commands is such, that if a client suggests a command
at the end of the n-th phase, the client cannot get a response from within k rounds of the
command being suggested. For this to hold, it suffices to miss βn = kΨ + 1 commands. In
order to miss βn commands, we have to suspend pn for at least βnk rounds, since a client
may submit a new command every (at most) k rounds. Thus, we set αn = βnk. Similarly,
replica pn−1 has to miss enough commands (βn−1) such that it cannot get all the commands
in less than k rounds. Note that after pn−1 was suspended for αn−1 rounds, replica pn took
part in αn rounds. During these αn rounds, replica pn−1 could have recovered commands
it was missing. Therefore, pn−1 must miss at least βn−1 = (αn + k)Ψ + 1 commands and
αn−1 = βn−1k. In the same vein, ∀i ∈ {1, . . . , n} βi = ((

n∑
j=i+1

αj) + k)Ψ + 1.
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With our construction we succeed in having βi/Ψ = (
n∑

j=i+1
αj) + k + 1/Ψ > k for every

i ∈ {1, . . . , n}. Therefore, using Lemma 2, after the n phases, each replica needs more than
k rounds to get informed about commands it is missing from its log, a contradiction. J

Theorem 3 states that there exists no SMR algorithm in our model that can respond to
every client command in a constant number of rounds.

3.2 Extension to other Models
The system model we use in this paper (Section 2) lends itself to capture naturally the
difference in complexity (i.e., number of rounds) between consensus and SMR. It is natural
to ask whether this difference extends to other system models—and which are those models.
Identifying all the models where our result applies, or does not apply, is a very interesting
topic which is beyond the scope of this paper, but we briefly discuss it here.

Consider models which are stronger than ours. An example of a stronger model is one
that is synchronous with no failures; such a model would disallow stragglers and hence both
consensus and SMR can be solved in constant time. Similarly, if the model does not restrict
the size of messages (see Lemma 1), then an SMR command can complete in constant time,
circumventing our result. We further discuss how our result can be circumvented in Section 5.

A more important case is that of weaker, perhaps more realistic models. If the system
model is too weak—if consensus is not solvable [19]—then it is not obvious how consensus
relates to SMR in terms of complexity. Such a weak model, however, can be augmented, for
instance with unreliable failure detectors [14], allowing consensus to be solved. Informally,
during well-behaved executions of such models, i.e., executions when the system behaves
synchronously and no failures occur [28], SMR commands can complete in constant time.

Most practical SMR systems [13, 16, 40, 43] typically assume a partially synchronous
or an asynchronous model with failure detectors [14], and executions are not well-behaved,
because failures are prone to occur [7]. We believe our result applies in these practical
settings, concretely within synchronous periods (or when the failure detector is accurate,
respectively) of these models. During such periods, if at least one replica can suffer message
omissions, completing an SMR command can take a non-constant amount of time. Indeed,
in the next section, we present an experimental evaluation showing that our result holds in a
partially synchronous system.

4 The Empirical Perspective

Our goal in this section is to substantiate empirically the theoretical result of Section 3. We
first cover details of the experimental methodology. Then we discuss the evaluation results
both in a single-machine environment, as well as on a practical wide-area network (WAN).

4.1 Experimental Methodology
We use two well-known State Machine Replication (SMR) systems: (1) LibPaxos, a Multi-
Paxos implementation [4], and (2) etcd [2], a mature implementation of the Raft protocol [43].
We note that LibPaxos distinguishes between three roles of a process: proposer, acceptor,
and learner [33]. To simplify our presentation, we unify the terminology so that we use
the term replica instead of acceptor, the term client replaces learner, and the term leader
replaces proposer. Each system we deploy consists of three replicas, since this is sufficient to
validate our result and moreover it is a common deployment practice [16, 23]. We employ

DISC 2018



7:10 State Machine Replication is More Expensive Than Consensus

one client. In LibPaxos, we use a single leader, which corresponds to a separate role from
replicas. In Raft, one of the three replicas acts as the leader.

Using these two systems, we measure how consensus relates to SMR in terms of cost in
the following three scenarios:

1. Graceful: when network conditions are uniform and no failures occur; this scenario only
applies to the single-machine experiments of Section 4.2;

2. Straggler: a single replica is slower than the others (i.e., this is a straggler) but no
failures occur, so the SMR algorithm needs not rely on the straggler;

3. Switch: a single replica is a straggler and a failure occurs, so the SMR algorithm has to
include the straggler on the critical path of agreement on commands.

Due to the difficulty of running synchronous rounds in a practical system, our measure-
ments are not in terms of rounds (as in the model of Section 2). Instead, we take a lower-level
perspective. We report on the cost, i.e., number of messages, and the latency measured at
the client.6 Specifically, in each experiment, we report on the following three measurements.

First, we present the cost of each consensus instance i in terms of number of messages
which belong to instance i, and which were exchanged between replicas, as well as the client.
Each consensus instance has an identifier (called iid in LibPaxos and index in Raft), and
we count these messages up to the point where the instance completes at the client. Recall
that in our model (Section 2.1) we similarly consider consensus to complete when the client
learns the decided value. This helps us provide an “apples to apples” comparison between
the cost of consensus instances and SMR commands (which we describe next).

Second, we measure the cost of each SMR command c. Each command c is associated
with a consensus instance i. The cost of c is similar to the cost of i: we count messages
exchanged between replicas and the client for instance i.7 The cost of a command c, however,
is a more nuanced measurement. As we discussed already, a consensus instance typically
leaks messages, which can be processed later. Also, both systems we consider use pipelining,
so that a consensus instance i may overlap with other instances while a replica is working
on command c. Specifically, the cost of c can include messages leaked from some instance
j, where j < i (because a replica cannot complete command c without having finished all
previous instances) but also from some instance k, with k > i (these future instances are
being prepared in advance in a pipeline, and are not necessary for completing command c).

Third, we measure the latency for completing each SMR command. An SMR command
starts when the client submits this command to the leader, and ends when the client learns
the command. In LibPaxos, this happens when the client gathers replies for that command
from two out of three replicas; in Raft, the leader notifies the client with a response.

We consider both a single-machine setup and a WAN. The former setup serves as a
controlled environment where we can vary specifically the variable we seek to study, namely
the impact of a straggler when quorums switch. For this experiment, we use LibPaxos and
we discuss the results thoroughly. The latter setup reflects real-world conditions which we
use to validate against our findings in the single-machine setup, and we experiment with
both systems. In all executions the client submits 1000 SMR commands; we ignore the first
100 (warm-up) and the last 50 commands (cool-down) from the results. We run the same
experiment three times to confirm that we are not presenting outlying results.

6 Note that it is simple to convert rounds to messages, considering our description of rounds in Section 2.
7 For LibPaxos, the cost of consensus and SMR includes additionally messages involving the leader.
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(a) Graceful scenario: all replicas experience uniform conditions and no failures occur.
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(b) Straggler scenario: one of the three replicas is a straggler.
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(c) Switch scenario: one of the three replicas is a straggler and the active quorum switches to
include this straggler.

Figure 2 Experimental results with LibPaxos on a single-machine setup. We compare the cost of
SMR commands with the cost of consensus instances in three scenarios.

4.2 Experimental Results on a Single Machine
We experiment on an Intel Core i7-3770K (3.50GHz) equipped with 16GB of RAM. Since
there is no network in these experiments, spurious network conditions—which can arise in
practice, as we shall see next in Section 4.3—do not create noise in our results. To make one
of the replicas a straggler, we make this replica relatively slower through a random delay
(via the select system call) of up to 500us when this replica processes a protocol message.

In Figure 2a we show the evolution of the three measurements we study for the graceful
execution. The mean latency is 5590us with a standard deviation of 730us, i.e., the
performance is very stable. This execution serves as a baseline.

In Figure 2b we present the result for the straggler scenario. The average latency,
compared with Figure 2a, is slightly smaller, at 5005us; the standard deviation is 403us. The
explanation for this decrease is that there is less contention (because the straggler backs-off
periodically), so the performance increases. In this scenario, additionally, there is more
variability in the cost of SMR commands, which is a result of the straggler replica being less
predictable in how many protocol messages it handles per unit of time.
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For both Figures 2a and 2b, the average cost of an SMR command is the same as the
average cost of a consensus instance, specifically around 12 messages. There is, however, a
greater variability in the cost of SMR commands—ranging from 5 to 30 messages—while
consensus instances are more regular—between 11 and 13 messages. As we mentioned already,
the variability in the cost of SMR springs from two sources: (1) consensus instances leak
into each other, and (2) the use of pipelining, a crucial part in any practical SMR algorithm,
which allows consensus instances to overlap in time [27, 46].

Pipelining allows the leader to have multiple outstanding proposals, and these are
typically sent and delivered in a burst, in a single network-level packet. This means that some
commands can comprise just a few messages (all the other messages for such a command
have been processed earlier with previous commands, or have been deferred), whereas some
commands comprise many more messages (e.g., messages leaked from previous commands, or
processed in advance from upcoming commands). In our case, the pipeline has size 10, and
we can distinguish in the plots that the bumps in the SMR cost have this frequency. Larger
pipelines allow higher variability in the cost of SMR. Importantly, to reduce the effect of
pipelining on the cost of SMR commands, this pipeline size of 10 is much smaller than it is
used in practice, which can be 64, 128, or larger [2, 4].

Figure 2c shows the execution where we stop one replica, so the straggler has to take
part in the active quorum. The moment when the straggler has to recover all the missing
state and start participating is evident in the plot. This happens at SMR command 450. We
observe that SMR command 451 has considerably higher cost. This cost comprises all the
messages which the straggler requires to catch-up, before being able to participate in the
next consensus instance. The cost of consensus instance 451 itself is no different than other
consensus instances. Since the straggler becomes the bottleneck, the latency increases and
remains elevated for the rest of the execution. The average latency in this case is noticeably
higher than in the two previous executions, at 10730us (standard deviation of 4726us). For
this execution, we observe the same periodical bumps in the cost of SMR commands. Because
the straggler replica is on the critical path of agreement, these bumps are more pronounced
and less frequent: the messages concerning the straggler (including to and from other replicas
or the client) accumulate in the incoming and outgoing queues and are processed in bursts.

4.3 Wide-area Experiments
We deploy both LibPaxos and Raft on Amazon EC2 using t2.micro virtual machines [1]. For
LibPaxos, we colocate the leader with the client in Ireland, and we place the three replicas in
London, Paris, and Frankfurt, respectively. Similarly, for Raft we colocate the leader replica
along with the client in Ireland, and we place the other two replicas in London and Frankfurt.
Under these deployment conditions, the replica in Frankfurt is naturally the straggler, since
this is the farthest node from Ireland (where the leader is in both systems). Therefore, we
do not impose any delays, as we did in the earlier single-machine experiments. Furthermore,
colocating the client with the leader minimizes the latency between these two, so the latency
measurements we report indicate the actual latency of SMR.

Figures 3 and 4 present our results for LibPaxos and Raft, respectively. To enhance
visibility, please note that we use different scales for the y and y2 axes. These experiments
do not include the graceful scenario, because the WAN is inherently heterogeneous.

The most interesting observation is for the switch scenarios, i.e., Figures 3b and 4b. In
these experiments, when we stop one of the replicas at command 450, there is a clear spike
in the cost of SMR, which is similar to the spike in Figure 2c. Additionally, however, there is
also a spike in latency. This latency spike does not manifest in single-machine experiments,
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(a) Straggler scenario: the replica in Frankfurt is a straggler, since this is the farthest from
the leader in Ireland. The system forms a quorum using the replicas in London and Paris.
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(b) Switch scenario: at SMR command 450 we switch out the replica in London. The straggler
in Frankfurt then becomes part of the active quorum.

Figure 3 Experimental results with LibPaxos on the WAN. Similar to Figure 2, we compare the
cost of SMR commands with the cost of consensus instances.

where communication delays are negligible. Moreover, on the WAN the latency spike extends
over multiple commands, because the system has a pipeline so the latency of each command
being processed in the pipeline is affected while the straggler is catching up. After this spike,
the latency decreases but remains slightly more elevated than prior to the switch, because
the active quorum now includes the replica from Frankfurt, which is slightly farther away;
the difference in latency is roughly 5ms.

Beside the latency spike at SMR command 450, these experiments reveal a few other
glitches, for instance around command 830 in Figure 3a, or command 900 in Figure 4b. In
fact, we observe that unlike our single-machine experiments, the latency exhibits a greater
variability. As we mentioned already, this has been observed before [12, 40, 54] and is largely
due to the heterogeneity in the network and the spurious behavior this incurs. This effect is
more notable in LibPaxos, but Raft also shows some variability. The latter system reports
consistently lower latencies because an SMR command completes after a single round-trip
between the leader and replicas [43].

As a final remark, our choice of parameters is conservative, e.g., execution length or
pipeline width. For instance, in executions longer than 1000 commands we can exacerbate
the difference in cost between SMR commands and consensus instances. Longer executions
allow a straggler to miss even more state which it needs to recover when switching.

5 Discussion

The main implication of Theorem 3 is that it is impossible to devise a State Machine
Replication (SMR) algorithm that can bound its response times. There are several conditions,
however, which allow to circumvent our lower bound, which we discuss here. Moreover,
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(a) Straggler scenario: the replica in Frankfurt is a straggler. The active quorum consists of
the leader in Ireland and the replica in London.
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(b) Switch scenario: we stop the replica in London at SMR command 450. Thereafter, the
active quorum must switch to include the straggler in Frankfurt.

Figure 4 Experimental results with Raft on the WAN. Similar to Figures 2 and 3, we compare
the cost of SMR commands with the cost of consensus instances.

when our result does apply, we observe that SMR algorithms can mitigate, to some degree,
the performance degradation in the worst-case, i.e., when quorums switch and stragglers
become necessary. These algorithms experience a trade-off between best-case and worst-case
performance. We also discuss how various SMR algorithms deal with this trade-off.

Circumventing the Lower Bound. Informally, our result applies to SMR systems which
fulfill two basic characteristics: i) messages are bounded in size, and ii) replicas can straggle
for arbitrary lengths of time. Simply put, if one of these conditions does not hold, then we
can circumvent Theorem 3. We discuss several cases when this can happen.8

For instance, if the total size of the state machine is bounded, as well as small in size, then
the whole state machine can potentially fit in a single message, so a straggler can recover in
bounded time. This is applicable in limited practical situations. We are not aware of any
SMR protocol that caps its state. But this state can be very small in some applications,
e.g., if SMR is employed towards replicating only a critical part of the application, such as
distributed locks or coordination kernels [27, 39].

The techniques of load shedding or backpressure [53] can be employed to circumvent
our result. These are application-specific techniques which, concretely, allow a system to
simply drop or deny a client command if the system cannot fulfill that command within
bounded time. Other, more drastic, approaches to enforce strict latencies involve resorting
to weak consistency or combining multiple consistency models in the same application [24],

8 We do not argue that we can guarantee bounded response times in a general setting, only in the model
we consider in Section 2.
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or provisioning additional replicas proactively when stragglers manifest [17, 50].

Best-case Versus Worst-case Performance Trade-off. When our lower bound holds,
an SMR algorithm can take steps to ameliorate the impact which stragglers have on perform-
ance in the worst-case (i.e., when quorums switch). Coping with stragglers, however, does
not come for free. The best-case performance can suffer if this algorithm expends resources
(e.g., additional messages) to assist stragglers. Concretely, these resources could have been
used to sustain a higher best-case throughput. When a straggler becomes necessary in an
active quorum, however, this algorithm will suffer a smaller penalty for switching quorums
and hence the performance in the worst-case will be more predictable.

This is the trade-off between best- and worst-case performance, which can inform the
design of SMR algorithms. Most of the current well-known SMR protocols aim to achieve
superior best-case throughput by sacrificing worst-case performance. This is done by reducing
the replication factor, also known as a thrifty optimization [40]. In this optimization, the SMR
system uses only F + 1 instead of 2F + 1 replicas—thereby stragglers are non-existent—so
as to reduce the amount of transmitted messages and hence improve throughput or other
metrics [4, 38, 40]. In the worst-case, however, when a fault occurs, this optimization requires
the SMR system to either reconfigure or provision an additional replica on the spot [37, 38],
impairing performance.

Multi-Paxos proposes a mode of operation that can strike a good balance between best-
and worst-case performance [32]. Namely, replicas in this algorithm can have gaps in their
logs. When gaps are allowed, a replica can participate in the agreement for some command
on log position k even if this replica does not have earlier commands, i.e., commands in log
positions l with l < k. As long as the leader has the full log, the system can progress. Even
when quorums switch, stragglers can participate without recovery. If the leader fails, however,
the protocol halts [11, 52] because no replica has the full log, and execution can only resume
after some replica builds the full log by coordinating with the others. It would be interesting
in future work to experiment with an implementation that allows gaps, but LibPaxos does
not follow this approach [4], and we are not aware of any such implementation.

It is interesting to note that there is not much work on optimizing SMR performance
for the worst-case, e.g., by expediting recovery [11], and this is a good avenue for future
research, perhaps with applicability in performance-sensitive applications. We believe SMR
algorithms are possible where replicas balance among themselves the burden of keeping each
other up to date collaboratively, e.g., as attempted in [8]. This would minimize the amount
of missing state overall (and at any single replica), so as to be prepared for the worst-case,
while minimizing the impact on the best-case performance.

6 Concluding Remarks

We examined the relation between consensus and State Machine Replication (SMR) in terms
of their complexity. We proved the surprising result that SMR is more expensive than a
repetition of consensus instances. Concretely, we showed that in a synchronous system where
a single instance of consensus always terminates in a constant number of rounds, completing
one SMR command can potentially require a non-constant number of rounds. Such a scenario
can occur if some processes are stragglers in the SMR algorithm, but later the stragglers
become active and are necessary to complete a command. We showed that such a scenario
can occur if even one process is a straggler at a time.

Our result—that an SMR algorithm cannot guarantee a constant response time, even
if otherwise the system behaves synchronously—brought into focus a trade-off in SMR.
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In a nutshell, this is the trade-off between the best-case performance and the worst-case
performance of an SMR algorithm. On the one hand, such an algorithm can optimize
for the worst-case performance. In this case, the algorithm can dedicate resources (e.g.,
by provisioning additional processes or assisting stragglers) to preserve its performance
even when faults manifest, translating into lower tail latencies; there are certain classes of
SMR-based applications where latencies and their variability are very important [6, 16, 17].
On the other hand, an SMR algorithm can optimize for best-case performance, i.e., during
fault-free periods, so that the algorithm advances despite stragglers being left arbitrarily
behind [26, 40]. This strategy means that the algorithm can achieve superior throughput,
but its performance will be more sensible to faults.

Additionally, we supported our formal proof with experimental results using two well-
known SMR implementations (a Multi-Paxos and a Raft implementation). Our experiments
highlighted the difference in cost between a single consensus instance and an SMR command.
To the best of our knowledge, we are the first to formally—as well as empirically—investigate
the performance-cost difference between consensus and SMR.
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Appendix

7 State Machine Replication Algorithm

We present an SMR algorithm for our model (Section 2). In contrast to consensus (Al-
gorithm 1), the presented SMR algorithm is quite more involved. For clarity, the algorithm
is presented in two parts: Algorithm 2 and Algorithm 3. In Algorithm 2, we present the
local variables of each replica and the code each replica executes in every round, and in
Algorithm 3 we present the two main procedures of the algorithm: prepareMessages and
onReceive.

The high-level overview of the algorithm is that processes decide on a command similar
to Algorithm 1 and can help each other by sending commands to processes that are missing
them. A bit more specific, each process contains an ordered log of decided commands. For a
command to appear in the i-th position of this log, processes need to agree by performing
consensus instance i. Processes propose a command for the next consensus instance they
are missing and if this position is already decided, other processes will try to help them
by sending them their missing commands. In order to be able to help, each process has
information9 on the next consensus instance each other process tries to decide upon.

Algorithm 2 State Machine Replication: Local Variables for Process pi and Flow in Each
Round

1: . Local Variables
2: ins← 1 . next consensus instance number to get a decision for
3: maxIns← 0 . greatest consensus instance number where a value is decided upon
4: nextMissingIns[p]← 1(∀p ∈ Π \ {pi}) . next instance each process needs
5: cmdsSet← ∅ . set of commands that are received from the client
6: cmdsDecided[i]←⊥ (∀i ∈ N+) . cmdsDecided[i] is the command decided for consensus

instance i, ⊥ means no decision is known yet
7: messageFor[p]←⊥ (∀p ∈ (Π \ {pi}) ∪ {client}) . messages to be sent in each round
8: SM ← initSM . initialized state machine to be replicated
9: myProposal← (pi,⊥, 0) . pi’s last proposal in the format of (pid, value, instance)

10: clientResponses[i]←⊥ (∀i ∈ N+) . stores all the responses destined for the client
11: lastResponse← 1 . index of clientResponses
12:
13: while new round do
14: send(messageFor)
15: responses← receive()
16: onReceive(responses,myProposal)
17: (messageFor,myProposal)← prepareMessages()

We continue by describing the local variables (Algorithm 2). Variable cmdsDecided
corresponds to a log of commands10 and contains the commands (in order) the process knows
have been decided. Note that cmdsDecided allows gaps, for example, a process might have
cmdsDecided[1] 6=⊥ and cmdsDecided[3] 6=⊥ but cmdsDecided[2] =⊥. It is guaranteed
however that ∀i ∈ N+ < ins, cmdsDecided[i] 6=⊥, where ins corresponds to the smallest

9 Note that since this information is local, it might become stale and not accurately describe the system.
10 You can think of the log as the `(e, p) construct presented in Section 2.
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position in the log the process does not have a command. Similar to ins, maxIns corresponds
to the maximum decided instance number of all the other processes. Specifically, maxIns
contains the maximum number j such that a process has decided on a command for the
j-th position in its log (i.e,. there is some process that has cmdsDecided[j] 6=⊥). Initially
maxIns is zero, since no process has decided on a command. Each time a process sends a
message, it attaches maxIns in it, so processes can get informed on the greatest consensus
instance number for the whole system where a value has been decided upon. Additionally,
each process attaches ins to each message it sends so that it can potentially get help from
other processes. Helping takes place when a process informs other processes about decided
commands they may need. For this, each process has an array (nextMissing) of the next
instance each process needs. A process looks at this array and sees if it can help another
process, and if so it sends the decided command to the other process. Variable cmdsSet
corresponds to a set of commands that are received from the client and are to be proposed
by the process. messageFor is set in prepareMessages as we will see later on, and it
simply contains the message to be sent in every round to the other processes or the client.
Additionally, each replica has a state machine SM that is initialized to initSM and it
provides an apply operation that takes as a parameter a command and returns the response
of applying this command to the state machine. Variable myProposal corresponds to a
potential command proposed by the process. Finally, the array clientResponses is used to
store computed responses that are to be send to the client and lastResponse is used to index
this array. This array is convenient in case a process is suspended in a round. If this is the
case, a process cannot send the response to the client in this round, so the process keeps
responses in the clientResponses array in order to be able to send a response when it is not
suspended.

The exact steps an algorithm executes in a round are presented in lines 13-17: initially
the process sends messages, then waits to receive back responses that are used together
with myProposal to change the state of the process and compute the next round’s messages
(messageFor).

We continue by describing how prepareMessages and onReceive operate. pre-
pareMessages operates as follows (Algorithm 3). First, it checks (Line 19) whether it has
already decided for instance ins. This could happen, if the processes retrieved a decision
in Line 60 or in Line 63 of onReceive. If the command exists in the set, the command is
removed from it (lines 20-21). Afterwards, the command is applied to the state machine
(Line 22), the response is stored in clientResponses (Line 23) and the latest response that
has not yet been transmitted to the client is stored in messageFor (Line 24) so it can be
sent in the next round to the client. Additionally, ins is incremented by one (Line 25). The
algorithm then initializes messageFor to contain the pair (ins,maxIns) (Line 26) for every
message to be sent to each other process. Including this pair in each message is helpful, since
ins allows other processes to know the consensus instance the process needs a command
for, and maxIns ensures that processes only accept proposals for positions that have not
yet been decided. Then, myProposal (Line 27) is cleared, since otherwise the algorithm
might use a previous proposal message. Afterwards, if there exists a command (Line 28) to
be proposed and that is not decided yet by the process (Line 30), the process concatenates
the proposal to each message (the construct ‖ corresponds to concatenation of messages)
(Line 31), and sets myProposal (Line 32). Then, in lines 35 to 37, the process checks if it
can help other processes by sending it decided commands it knows that other processes are
missing. At the end it returns messageFor together with the proposal (Line 38). Finally,
note that each message sent to another processes consists of at most three parts, a pair
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Algorithm 3 State Machine Replication (for process pi)
18: procedure prepareMessages()
19: if cmdsDecided[ins] 6=⊥ then
20: if cmdsDecided[ins] ∈ cmdsSet then
21: cmdsSet.remove(cmdsDecided[ins])
22: response← SM.apply(cmdsDecided[ins])
23: clientResponses[ins]← response

24: messageFor[client]← clientResponses[lastResponse]
25: ins← ins+ 1
26: messageFor[p]← (ins,maxIns),∀p ∈ Π \ {pi}
27: myProposal← (pi,⊥, 0) . clear last proposal
28: if cmdsSet 6= ∅ then
29: cmd← cmdsSet.get() . returns but does not remove an element from the set
30: if ∀j : cmdsDecided[j] 6= cmd then . not decided yet in which order to execute

cmd

31: ∀p ∈ Π \ {pi}, messageFor[p] ← messageFor[p] ‖ pro(cmd, ins)
32: myProposal← (pi, cmd, ins)
33: else
34: cmdsSet.remove(cmd) . already have decided on cmd, so no need to propose

it
35: for p ∈ Π \ {pi} do
36: if ∃j : nextMissingIns[p] = j ∧ cmdsDecided[j] = cmd 6=⊥ then
37: messageFor[p]← messageFor[p] ‖ dec(cmd, nextMissingIns[p])
38: return (messageFor,myProposal)
39:
40: procedure onReceive(responses,myProposal)
41: if (client, cmd) ∈ respones then
42: cmdsSet.put(cmd)
43: responses← responses \ {(client, cmd)}
44: . a received message sent by process pj is of the format pj , A‖B‖C, where
45: . A = (insj ,maxInsj), B =pro(cmdj , insj) and C =dec(cmdj , nextMissingj)
46: if responses 6= ∅ then . else, pi is suspended in this round
47: if messageFor[client] 6=⊥ then
48: lastResponse← lastResponse+ 1
49: messageFor[client]←⊥
50: proposals← decisions← ∅
51: for pj , (insj ,maxInsj)‖pro(pcmdj , pinsj)‖dec(dcmdj , nextMissj) in responses

do
52: maxIns← max(maxIns,maxInsj)
53: nextMissing[pj ]← insj + 1
54: proposals← proposals ∪ {(pj , pcmdj , pinsj)}
55: decisions← decisions ∪ {(dcmdj , nextMissj)}
56: proposals← proposals ∪ {myProposal}
57: if ∃(_,_, pins) ∈ proposals : pins = maxIns+ 1 then
58: commands← {pcmd : ∃(_, pcmd, pins) ∈ proposals : pins = maxIns+ 1}
59: decision← deterministicFunction(commands)
60: cmdsDecided[maxIns+ 1]← decision

61: maxIns← maxIns+ 1
62: for ∀(dmcd, nextMissing) ∈ decisions : cmdsDecided[nextMissing] =⊥ do
63: cmdsDecided[nextMissing]← dmcd

DISC 2018



7:4 REFERENCES

of instance numbers (ins,maxIns), a propose, and a decided message. The careful reader
might notice that consensus instance numbers can grow infinitely large. Hence, messages can
potentially have unbounded size. One option to avoid this, is to split a large message into
multiple smaller ones and keep the exact same algorithm, with the slight change that it only
considers a message when it has accepted all of its smaller messages. Another option is to
explicitly state that messages consist of two parts, a header part that contains information
such as instance numbers, signatures, etc., and an application part. Then, we can just ask
to bound the application part of the messages, but not the header part [? ]. We are not
concerned with the header, which can grow so as to permit increasingly larger consensus
instance numbers. On the other hand, this bound on the application part of a message is
important to prevent “cheating” in the sense of batching all the commands from multiple
consensus instances in a single message.

onReceive operates as follows. First, it checks whether the client sent a message
(Line 41), and if so adds the sent command to cmdsSet (Line 42) and removes it from
responses (Line 43). Then, the process checks if it is suspended in this round (Line 46),
and if this is the case it does not perform any other operation. If the process is correct and
messageFor[client] 6=⊥ (Line 47) it means that it successfully sent the previous response to
the client, so it increases lastResponse (Line 48) and clears messageFor[client] (Line 49).
Then, it initializes proposals and decisions to be empty sets (Line 50). Then, it goes through
the responses (Line 51) to update maxIns (Line 52), update nextMissing for each process
(Line 53) and gather proposals and decisions from the responses (lines 54-55)11. Afterwards,
the process adds its own proposal to the set of proposals (Line 56). Then, if there are
proposals (Line 57) for instance number equal to maxIns+1, all the commands are extracted
from such proposals (Line 58) (note that we employ pattern matching by using the symbol
_). The extracted commands are passed through some deterministic function (similar to
Algorithm 1) and a value is decided upon (Line 60). Subsequently, maxIns is incremented
appropriately (Line 61). At the end, the process goes through the decided messages (Line 62)
and utilizes delivered commands that it needs.

Finally, note that the algorithm accepts optimizations (e.g., updating the nextMissing

array after deciding on a command in Line 60), but we omitted them for clarity.

Proof. In what follows we prove that the algorithm satisfies safety (i.e., it is a valid
SMR algorithm) and liveness (i.e., a clients eventually gets a response for any command
it proposes) in theorems 8 and 12 respectively. We start by proving some useful lemmas.
Note that in what follows we consider that the commands proposed by the client are always
distinguishable. Furthermore, we denote with variablep[i] the value of variable[i] of process
p. Finally, when we state that a variable has a specific value in some round r, we refer to the
beginning of round r (exactly before Line 14).

I Lemma 4. For any p ∈ Π, maxInsp never decreases.

Proof. Note that maxInsp is only modified in lines 52 and 61. In Line 52, maxInsp cannot
decrease since it is updated to be the maximum of its own value and the maxIns received by
some other process, so it will be greater or equal to what it was before. In Line 61, maxInsp

is incremented by one, so again it does not decrease. J

I Lemma 5. For any p ∈ Π and i ∈ N+, if i ≥ maxInsp + 1, then cmdsDecidedp[i] =⊥.

11 Note that a response might not contain a proposal or a decision.
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Proof. We use induction to prove this lemma. At the beginning of the first round, the
property trivially holds. Assume it holds at the beginning of round r. We will show it holds
at the beginning of round r+1. During the execution of round r there are two possibilities for
cmdsDecidedp to be modified so that the property will not hold. One is for cmdsDecidedp

to be written in Line 60 and another to be written in Line 63. If a write occurs in Line 60 the
property does not hold but maxInsp is incremented immediately afterwards in Line 61, so
the property holds back up again. The other case is that cmdsDecidedp is written in Line 63.
If nextMissing = maxInsp + 1, then the property will not hold in round r + 1. However,
this would imply that some other replica sent a decided message with maxInsp + 1 in the
previous round. But then maxInsp in Line 52 would have been updated to correspond to
this fact, a contradiction. Finally, note that due to Lemma 4 maxInsp never decreases, so
the property cannot be circumvented by a reduction in maxInsp. Therefore, the property
holds at the beginning round r + 1 and hence of every round. J

I Lemma 6. For any p ∈ Π and i ∈ N+, cmdsDecidedp[i] is written at most once.

Proof. We note that cmdsDecidedp[i] for a specific i ∈ N+ is only updated in Algorithm 3
and in two places: Line 60 and Line 63. Furthermore, updates to cmdsDecidedp take
only place by processes that were not suspended in this round (Line 46). An update of
cmdsDecidedp in Line 60 occurs for the index maxInsp + 1. Note that maxInsp since the
start of the round might have only increased in Line 52, so the result of Lemma 5 is still
satisfied. Due to Lemma 5, cmdsDecidedp[maxInsp +1] will be ⊥. Hence updates in Line 60
can only occur in slots of cmdsDecidedp that do not contain a command (i.e., a slot i such
that cmdsDecidedp[i] =⊥). Therefore, slots that contain commands will not get overwritten
in Line 60. Similarly, the update in Line 63 only occurs if cmdsDecidedp[i] =⊥ (where
i = nextMissing) and not otherwise, so a cmdsDecidedp[i] that already contains a command
( 6=⊥) will not get updated in Line 63. Therefore, a specific position in cmdsDecidedp gets
updated at most once. J

I Lemma 7. For any two processes p, p′ ∈ Π that are correct in a round r, then maxInsp =
maxInsp′ immediately after Line 52 in round r.

Proof. For this lemma, we use a similar argument to the one used to prove that the consensus
Algorithm 1 satisfies agreement. All the correct processes would be able to deliver their local
maxIns. Then each correct process will apply get the maximum for all the maxIns values
it delivered (Line 52), as well as its own. Hence, they will have the exact same value. J

I Theorem 8. Algorithm 3 is a valid SMR algorithm.

Proof. To show that the algorithm is valid, we have to show that the logs (cmdsDecided)
are always consistent with each other.

We prove by induction that Algorithm 3 has the following property: for any two processes
p, p′ ∈ Π, if cmdsDecidedp[i] 6= cmdsDecidesp′ [i] for some i ∈ N+, then cmdsDecidedp[i] =⊥
or cmdsDecidedp′ [i] =⊥. In the first round, the property trivially holds since cmdsDecidedp[i] =⊥
∀i ∈ N+ and ∀p ∈ Π. Assume the property holds for all the rounds up to the r-th one. We
will prove that it holds for round r + 1. For this, we note that cmdsDecided is updated in
two different places, so we consider two cases:

If a proposal takes place in Line 60. Due to Lemma 7, all correct processes will have the
exact same maxIns values, so they would all consider the exact same set of proposals
(Line 58). Similar to the consensus Algorithm 1, correct processes will choose the exact
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same set of commands as well and pass them through the deterministicFunction to make
a decision. Therefore, all replicas will store the exact same decision in their cmdsDecided
log and hence the property still holds.
If cmdsDecided is updated in Line 63, this means that the process received a decided
message. This decided message was computed in a previous round (Line 37), but in the
previous round the property holds (by induction). Therefore, if more than one process
updates the nextMissing array, they will update it with the exact same command.

Finally, since the same log position is never updated more than once due to Lemma 6, the
property will always be satisfied. Therefore, based on the definition of a valid SMR Algorithm
(Section 2), Algorithm 3 is valid. J

I Lemma 9. If cmdsDecidedp[i] = cmd 6=⊥ for some process p ∈ Π, then there are at least
n− 1 processes with cmdsDecided[i] = cmd.

Proof. In other words, this lemma states that each decided command exists in the log of
n − 1 replicas. When a command is first decided upon in Line 60, every correct process
at that round (and there are at least n − 1 correct processes in each round) decides on
the exactly same command, since all correct processes see the exact same maxIns value
(Lemma 7). Hence, at least n− 1 processes will store this command in cmdsDecided. J

I Lemma 10. If cmdsDecidedp[i] 6=⊥, then eventually at least n − 1 processes, for all
j : 1 ≤ j ≤ i will have cmdsDecided[j] 6=⊥.

Proof. Recall, that in every round, every process sends ins (Line 26) to the other processes
informing them on the instance it is currently trying to get a command for. If the process is
correct in the round, at least n− 1 of the other correct processes in this round will deliver
the message and update their local nextMissing array (Line 53). From Lemma 9 we know
that each decided command exists in the log of at least n− 1 processes. Since n ≥ 3 and at
most one process can be suspended in a round, we know that there will always be one correct
process that contains a command that we are missing and that can help (Line 37). Therefore,
in the next round if this process is correct it will receive a decision. Hence, eventually at
least n− 1 processes will eventually fill up their log up to position i. J

I Lemma 11. If a command c is decided (∃p ∈ Π and ∃j ∈ N+ such that cmdsDecidedp[j] =
c), then the client eventually gets a response for command c.

Proof. Due to Lemma 10, we know that if a command c appears in the log of some process,
eventually c will appear in the logs of at least n − 1 processes, as well as all the previous
commands in the log. Each process would have applied the command to the local state
machine and stored the response in clientResponses (Line 23). Note however, that a process
sends a response of a command to the client only if it is certain that the response to the
previous command has been successfully delivered by the client. So only if the process is
correct in a round and it can be assured that the previous response message was sent to the
client (see lines 48 and 49), only then, the process sends the response to the next command
to the client. Therefore, the client will eventually get a response for command c. J

I Theorem 12. If a client suggests a command, then the client eventually gets a response.

Proof. Assume by contradiction that the k-th command ck is the first command that is
suggested by the client in which the client never gets a response for. We will prove that
the client will eventually get a response for ck and hence a contradiction. First, note that
since at least n − 1 processes are correct in each round, at least n − 1 processes will add
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ck to their log (Line 42). The client only suggests a command if it received a response for
the previous command (see Section 2). Hence, processes have already decided on the ck−1
command. From Lemma 9, we know that ck−1 exists in the log of at least n− 1 processes.
Furthermore, due to Lemma 10, eventually all processes will fill their logs up to command
ck−1. This means that eventually cmdsSet will contain ck as a the first command for at
least n− 1 processes, since all the other commands will be decided and removed from the set
(Line 21 and 34). Therefore, ck will be eventually proposed with instance number k, where
k = maxInsp + 1 for some process p, and hence it will be decided. Finally, from Lemma 11,
since command ck is decided, the client will eventually get a response for this command. J
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