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ABSTRACT
This paper describes an enhanced replica synchronization
mechanism built in Microsoft’s WinFS replica management
system.

The system reconciles autonomously-operating replicas in a
completely peer-to-peer manner, without employing a cen-
tral master or locking. The main challenge is for two replicas
to exchange meta-information efficiently about (potentially
numerous) data objects in order to discover what updates
they are missing, and detect conflicts.

The paper introduces a novel bundling mechanisms called
VS, that groups together multiple objects and represents
their state in a single version-vector. VS provides improved
storage and communication overheads over previously known
optimistic replication schemes, in the following sense. Under
normal, low-fault situations, it maintains and communicates
as little as a single version vector in order to represent prece-
dence ordering of the entire set of data objects. Moreover,
under settings of severe communication disruptions, VS de-
generates to no worse than a single vector per object. This
dramatically improves the complexities described in a pre-
liminary write-up of the WinFS replication scheme.

The VS mechanism has potentially wide applicability as a
mechanism for compactly handling synchronization of arbi-
trarily overlapping groups of objects.

1. INTRODUCTION
Consider the following problem. A set of data objects is
loosely replicated over a group of replicas. Replicas are al-
lowed to introduce updates on objects independently. Oc-
casionally, some pair of replicas communicate in order to
synchronize the states of all the objects they store. They

need to convey to each other the latest state of each object,
determine which objects need to be shipped over, and alert
to any conflicting, independent simultaneous updates. As
the full set of objects may potentially be very large, captur-
ing this causality information precisely in a concise form is
a challenging task.

This problem arises at the core of the replica reconciliation
and conflict detection mechanism inside Microsoft’s WinFS
system. WinFS supports weakly consistent file replication
among autonomous hosts, e.g., laptops, mobile PDAs, and
PCs. WinFS encompasses a visionary end-user experience
that allows users to hop on a plane, be at home, at the of-
fice, or in an ad-hoc network relationship with others; yet,
all the time, the user experience remains unchanged, as she
may transparently access her files. To this end, disconnected
replicas are allows access to files both for reads and for up-
dates. Periodically, and whenever communication is facil-
itated, WinFS reconciles replicas in a completely peer to
peer fashion, with no central coordinator or master. Al-
though this fundamental optimistic replication paradigm is
well known in distributed computing, the applications that
are targeted by WinFS mandate taking scale more seriously
than ever before. In particular, e-mail repositories, log files,
digital libraries, and application databases can easily reach
millions of objects. Hence, communicating even a single bit
per object (e.g., a ‘dirty’ bit) in order to be able synchronize
replicas might simply be too costly.

This paper presents a precise description and correctness
proof of an enhanced replica synchronization scheme de-
ployed in WinFS, which we name Vector Sets (VS). We
produce a systematic study of the performance gains of VS
and provide a comparison with previous weakly-consistent
replication schemes. The results demonstrate a substantial
reduction in the storage and communication overhead asso-
ciated with replica synchronization in the following sense.

Under normal, low-fault situations, VS maintains and com-
municates as little as a single version vector in order to rep-
resent precedence ordering of the entire set of data objects.
This is in sharp contrast to the prevailing method for almost
two decades: Associating a version vector per object [1]. A
version vector contains a count of updates from each replica.
For example, a vector 〈(A, 1), (B, 3), (C, 0), (D, 5)〉 indicates



one update by A, three by B, none by C, and five by D. It is
easy to determine between two version vectors whether one
precedes the other. The overheads incurred by the version
vectors method are as follows. With N objects, R replicas,
and q recent updates, storing a version vector per object
costs each replica N × R. Communicating its knowledge
during synchronization costs a replica at least q × R and
at worst N × R. An additional communication overhead of
q × R results from communicating one version vector with
each object that is being updated. VS brings these costs
down to N , R and q, respectively. Table 1 summarizes the
various costs incurred with VS and version vectors.

Under settings of severe communication disruptions, perfor-
mance may gradually degrade. However, it is provably never
worse than the performance of version vectors (see Table 1).
In such settings, VS dramatically improves the complexities
described in a preliminary writeup of the WinFS replication
scheme [4], which was named PVE. More specifically, PVE
incurs an unbounded price when synchronization between
parties is disrupted: An uncompleted synchronization must
either be aborted, or incurs a management cost that could
grow beyond a per-object version vector.

In summary, VS combines the good properties of version
vectors and PVE. Specifically, under all circumstances, VS
is at least as good as the version vector scheme. During
normal, low-fault settings, VS is as good or slightly improves
on the costs of PVE.

We first present in Section 3 a simple version of VS, and
call it SVS (Simple Vector Sets). SVS serves to point to the
core idea behind our improvement. It has the same upper
and lower bound complexities as VS, but its average case
behavior is sub-optimal.

Briefly, SVS works as follows. A single vector counts up-
dates made by the replicas on all data objects. For exam-
ple, 〈(A, 1), (B, 3), (C, 0), (D, 5)〉 indicates one update by A
on some date object, three by B on some object(s), none by
C on any object, and five by D on some object(s). Consider
a replica, say A, whose objects are represented by the vec-
tor above. Suppose that A tries to synchronize with another
replica, say C, whose knowledge vector is
〈(A, 1), (B, 5), (C, 2), (D, 5)〉. Then A needs to obtain from
C any updates among {(C, 1), (C, 2), (B, 4), (B, 5)} which
were not overridden. Specifically, presume that object w is
updated first in (C, 1) and then by (B, 5). Object x is up-
dated in (B, 4) followed by (C, 2). Then C only needs to
send over to A objects w, x in their most updated versions,
namely, (B, 5), (C, 2), respectively.

An interesting challenge occurs if the communication is dis-
rupted after object w ((B, 5)) is received, but before object
x ((C, 2)) is. Note that the knowledge vector of C can-
not be combined at A. We resolve this problem in SVS as
follows. After the disrupted synchronization with C, A con-
tinues holding an unchanged knowledge vector. In addition,
for any individual object that has been updated, e.g., w in
the example scenario above, A maintains an independent
version vector. Individual version vectors are updated inde-
pendently during synchronization and data updates. At any
point where an individual version vector becomes dominated

by the global knowledge vector, it may be erased.

SVS clearly has a worst-case cost no greater than version
vectors, since in the extreme, every object holds an indepen-
dent vector. But in most normal situation, it will perform
much better.

Moreover, we can further optimize average-case storage and
communication costs. In our full VS scheme, presented in
Section 4, we introduce the notion of Vector Sets. These
are sets of objects that share a single version vector. The
Initially, each replica has one set only, the set of all ob-
jects, and they are represented by a single version vector.
When a synchronization is interrupted, this set splits into
two subsets (updated and non-updated), and subsequent in-
terrupted synchronization procedures may cause additional
splits. Merging of sets is made possible by having future
synchronization procedures run to completion. Compared
with SVS, the full VS scheme stores fewer individual vec-
tors by aggregating sets of objects. For example, as a result
of a single interrupted synchronization that passed q objects,
SVS stores q + 1 vectors (one global, and one for each up-
dated object), whereas VS stores only two vectors (one for
the updated subset, and one for the non-updated subset).

Contribution. Our contributions are as follows. We present
a method for aggregating causality information using the
novel notion of Vector Sets (VS). When deployed for peer-
based synchronization, VS provides improved storage and
communication overheads over previously known optimistic
replication schemes. VS is deployed in the WinFS storage
project at Microsoft.

In addition to its good performance, the VS mechanism has
potentially wide applicability as a mechanism for compactly
handling synchronization of arbitrarily overlapping groups
of objects.

2. PRELIMINARIES
2.1 Problem Statement
The system consists of a collection of data objects, poten-
tially numerous. Each object might be quite small, e.g. a
mail entry or even a status word. Objects are replicated
on a set of replicas. Each replica may locally introduce up-
dates to any object without any concurrency control. These
updates create a partial ordering of object versions, where
updates that sequentially follow one another are causally
related, but unrelated updates are conflicting.

Our focus is on distributed systems in which updates over-
write previous versions. In such state-based replication sys-
tems, only the most recent version of any object needs to be
sent during synchronization.

Our goal is to provide a replica reconciliation and conflict
detection mechanism. The mechanism should provide two
communicating replicas with the means to detect precedence
ordering on object versions that they hold and detect any
conflicts while requiring only a small amount of per-object
overhead. With this mechanism, replicas can bring each
other up-to-date and report conflicts.



Version vectors PVE VS

store lower bound eO(N ×R) eO(N + R) eO(N + R)

store upper bound eO(N ×R) unbounded eO(N ×R)

comm lower bound eO(q ×R) eO(q + R) eO(q + R)

comm upper bound eO(N ×R) unbounded eO(N ×R)

Table 1: Lower and Upper Bounds Comparison of VS, PVE and version-vectors.

More precisely, we now describe objects, versions, and causal-
ity. An object is identified uniquely by its name. We identify
objects by letters, e.g., w, x, y, z. Every object instance,
in addition to its name, has a version. An object’s version
is a pair 〈replica id, counter〉. When we need to explicitly
associate a version with an object we denote this by object-
id.version.

There is a partial, causal ordering among different versions
of the same object. When a replica A updates an object
x it sets the version of x to a new version v. The set W
of versions of x that are previously known by replicas A
causally precedes version v. In notation, W ≺ v. For every
version w ∈ W, we likewise say that w causally precedes v;
in notation, w ≺ v. Causality is transitive.

Since the system permits concurrent updates, the causal-
ity relation is only a partial order, i.e. multiple versions of
the same object might follow any single version. When two
versions do not follow one another, they are conflicting. In
other words, if x.w 6≺ x.v ∧ x.v 6≺ x.w, then v and w are
said to conflict.

It is desirable to detect and resolve conflicts, either auto-
matically (when application-specific conflict resolution code
is available) or by alerting users who can resolve conflicts
manually. In either case, a resolution of conflicting versions
is a version that causally follows both. For example, here
is a conflict and its resolution: v0 ≺ v ≺ w ; v 6≺ u ; u 6≺
v ; v0 ≺ u ≺ w .

New versions override previous ones, and so replicas are gen-
erally only interested in the most recent version available;
versions that causally precede it are obsolete and carry no
valuable information. This simple rule is complicated by
the fact that multiple conflicting versions may exist; in this
case, replicas are interested in all concurrent versions until
they are resolved.

2.2 Synchronization Framework
Synchronization occurs between a pair of peer replicas, a
requestor and a source. Any replica may initiate a synchro-
nization, so in particular, reciprocal synchronization may
occur in the reverse direction. The interaction consists of
four steps.

1. The requestor r contacts a source and sends a knowl-
edge description, encompassing all of the latest object
versions r has in store.

2. The source s responds by sending the latest version of
every object o which is not known to r.

3. For every object o the requestor receives, it integrates
o into store, and raises a conflict alarm where needed.

4. For every new object version r has stored, it updates
its repository with the new version. The new version,
as well as any version that directly or indirectly pre-
cedes it, is updated in r’s knowledge, even though it
may not have been explicitly added to store.

2.3 Performance Measures
This paper is concerned with mechanisms that facilitate syn-
chronization of different replicas. The challenge is to bring
the storage and communication costs associated with replica
reconciliation (significantly) down. More precisely, we focus
on two performance measures:

Storage is the total number of overhead bits stored in order
to preserve version ordering.

Communication is (i) the total number of bits commu-
nicated between two replicas in order to determine
which updates are known to one replica but not the
other, and (ii) any overhead data that is transferred
along with objects’ states in order to determine prece-
dence/conflicts.

2.4 Versions and Version-Vectors
Def. 2.1 (Per-Replica Counter). Let X be a replica.

The versions generated by replica X across all objects in the
collection are the ordered sequence {〈X, i〉}i=1,2,....

Def. 2.2 (Version Vectors). Let X1, ..., XR be the
set of replicas. A version vector is an R-array of tuples
of the form (〈X1, i1〉, ..., 〈XR, iR〉).

A version vector (〈X1, i1〉, ..., 〈XR, iR〉) dominates another
vector (〈X1, j1〉, . . . , 〈XR, jR〉) if ik ≥ jk for k = 1..R, and
it strictly dominates if i` > j` for some 1 ≤ ` ≤ R.

By a natural overload of notation, we say that a vector
(〈X1, i1〉, . . . , 〈XR, iR〉) dominates a version 〈Xk, jk〉 if ik ≥
jk; strict domination follows accordingly with strong inequal-
ity.

3. SIMPLE VECTOR SETS (SVS)

Versions and Predecessor Vectors.The Simple Vector
Sets scheme uses the per-replica counter defined in Defini-
tion 2.1, which enumerates updates generated by the replica
on all objects. Hence, a replica Xr maintains a local counter



c. When replica Xr updates an object o, it increments the
local counter and sets o’s version to 〈Xr, c〉.

The predecessors vector of an object o is a vector that dom-
inates all the versions that causally precede o.version (in-
cluding o.version). It may (and usually does) dominate ver-
sions of other objects, but no other versions of o.

Knowledge and Predecessors.A replica Xr maintains
in Xr.knowledge a version vector representing versions it
knows of. An object’s individual predecessors vector con-
tains information about preceding versions on that object.
When an individual predecessors vector can be replaced by
Xr.knowledge, it is set to empty (⊥). Empty predecessors
implicitly imply that Xr.knowledge contains all (and no
more) than the object’s preceding versions. We will see be-
low the precise conditions under which o.predecessors can
be dropped.

Generating a New Version.When a replica Xr generates
a new update on an object o, the new version 〈Xr, c〉 is in-
serted into Xr.knowledge right away. Then, if o.predecessor
is ⊥, nothing needs to be done to it. Implicitly, this means
that the versions dominated by Xr.knowledge causally pre-
cede the new version. If o.predecessors is not empty, then
the new version is inserted to o.predecessors as well. In-
deed, all the versions that were dominated by the previous
o.predecessors causally precede the new update.

Synchronization.Figure 1 below describes the SVS syn-
chronization protocol.

When a requestor Xr obtains a new object version from
Xs, it first keeps an individual predecessor vector for this
object. Later, it may omit this vector if it is dominated by
Xr.knowledge.

In addition to this, Xs.knowledge needs to be merged with
Xr.knowledge at the end of a complete synchronization.
The reason for this is that there may be some versions
that Xs knows about that are overridden by later versions.
For example, Xs may have version 〈B, 5〉 of an object o,
overriding a previous version 〈C, 6〉. Hence, Xs only sends
〈B, 5〉 over to Xr during synchronization, and never sends
〈C, 6〉 explicitly to Xr. The goal of the merging is to pro-
duce a vector that represents a union of all the versions
included in Xr.knowledge and Xs.knowledge, and replace
Xr.knowledge with it. For example, merging Xs.knowledge =
(〈A, 3〉, 〈B, 5〉, 〈C, 6〉) into Xr.knowledge = (〈A, 7〉, 〈B, 3〉, 〈C, 1〉)
yields (〈A, 7〉, 〈B, 5〉, 〈C, 6〉).

Conflicts. When conflicting versions of the same object ex-
ist at replica X, the base knowledge X.knowledge can be set
to dominate both of them. However, in order to correctly
detect further conflicts, individual predecessors need to be
stored for each version. We exemplify this with a simple
scenario.

Suppose that replica X has the following two versions of a
single object. Version v1 = 〈B, 5〉 has predecessors
(〈A, 1〉, 〈B, 5〉, 〈C, 2〉), and version v2 = 〈C, 3〉 has predeces-
sors (〈A, 1〉, 〈B, 4〉, 〈C, 3〉). These are conflicting versions.
Replica X can set X.knowledge to (〈A, 1〉, 〈B, 5〉, 〈C, 3〉).
Then, during synchronization, if X requests updates from
Xs, X.knowledge suffices to describe the versions known to
X, i.e., Xs does not need to send over to X any version
dominated by X.knowledge.

Now consider the reverse situation, where X is prompted
for updates by another replica, Xr, and X sends the ver-
sions 〈B, 5〉 and 〈C, 3〉. Then neither version must override
the other, and hence, X must send the original, individual
predecessors vector along with each version.

1. Requestor Xr sends source Xs its knowl-
edge set Xr.knowledge, and a set IS of pairs
(w.name, w.predecessors), such that w.predecessors 6= ⊥.

2. Source Xs responds with the following:

(a) It sends Xs.knowledge.

(b) It sends every object o (containing its name, version,
predecessors vector, and data) for which o.version 6≤
r.knowledge, and there does not exist w ∈ IS with
w.name = o.name and o.version ≤ w.predecessors.

3. For every version o received from Xs, requestor Xr does
the following:

(a) Loop through all objects w in store, such that
w.name = o.name:
if o.version ≤ w.predecessors or (w.predecessors =
⊥ and o.version ≤ r.knowledge) then ignore o and
stop loop;
else if w.version ≤ o.predecessors or
(o.predecessors = ⊥ and w.version ≤ s.knowledge)
then delete w;
(else o and w conflict.)

(b) store o.

(c) If o.predecessors = ⊥, then set o.predecessors =
s.knowledge.

(d) For every object w in store, such that w.name =
o.name (these must be conflicting versions), link w
to o and mark them conflicting.

4. Merge Xs.knowledge into Xr.knowledge.

5. (Lazily) go through versions v such that (i)
v.predecessors 6= ⊥, (ii) v is not marked as conflicted with
another version, and (iii) Xr.knowledge dominates v: Set
v.predecessors = ⊥. As an additional minor optimization,
for every version v = 〈s, ns〉 such that Xr.knowledge has
〈s, ns − 1〉 at the Xs-position, update Xr.knowledge to
contain 〈s, ns〉.

Figure 1: SVS Synchronization.

4. VECTOR SETS (VS)
This section describes the full Vector Sets (VS) scheme. The
Vector Sets scheme strives to pack together sets of object
versions for which there exists a single version vector that
dominates all the versions that precede or include them.



Versions.The Vector Sets scheme uses the same per-replica
counter as in Section 3 above. Hence, a replica Xr maintains
a local counter c. When replica Xr updates an object o, it
increments the local counter and sets o’s version to 〈Xr, c〉.

Vector Sets and Predecessor Vectors.A replica Xr main-
tains a partition of the set of objects, {S1, ..., Sc}. Each sub-
set S contains a description S.list of the objects in the set
(e.g., a list of names, or a range of names). In order to keep
costs down, object sets that can be enumerated concisely are
preferred, e.g., consecutive ranges of objects. Each object
set has an associated predecessors vector. S.predecessors
dominates all the versions that causally precede the versions
in S, but not any other versions of objects in S. It may (and
usually does) dominate versions of objects not included in
S, that are therefore not in any ordering relations with the
versions in S.

Conflicts. Conflicting versions are handled as in the case
of SVS, i.e., by storing individual predecessor vectors with
every conflicting version, until they are resolved.

Inserting a New Version.When a new version v = 〈Xs, js〉
is stored at Xr, every subset S that has S.predecessors with
〈Xs, js − 1〉 at the Xs-position is updated to 〈Xs, js〉.

Synchronization.Figure 2 below describes the VS syn-
chronization protocol.

A requestor Xr has in store subsets {R1, ..., Rk}. It tries
to obtain any newer version Xs has in store. Xs may have
a different partition of the objects, say {S1, ..., Sm}. This
could be an explicit partition at Xs, or an implicit partition
created by a disrupted synchronization.

Let Sj be a set of objects for which synchronization with Xs

has completed, and Sj .predecessors is its associated vector.
Then merging Sj ’s predecessors into storage at Xr is done
as follows. For every subset R at Xr such that R ∩ Sj 6= ∅,
split R into R1 = R∩Sj and R2 = R\Sj (note that, R2 may
be empty, in which case ignore it). Merge Sj .predecessors
into R1.predecessors.

Merging subsets.Periodically, a replica Xr can merge two
subsets S′ and S′′ if they have identical predecessor vectors.
This would be the case, for example, after synchronizing
with a replica that has both S′ and S′′ contained in a larger
set.

4.1 VS Performance
For best performance, the VS scheme should strive to main-
tain concise representations of partitions. It achieves this as
follows. Let there be an enumeration of all the objects (say,
’A’ through ’Z’). During synchronization, the replicas ex-
change missing versions in order of the objects enumeration
(’A’, ’B’, ’C’, etc.). A partition that results from disrupted
synchronization can always be described concisely.

1. Requestor Xr sends source Xs

a list of object-sets descriptions
{〈R1.list, R1.predecessors〉, ..., 〈Rk.list, Rk.predecessors〉}.

2. Source Xs responds with the following, for every subset S
it stores:

(a) It sends 〈S.list, S.predecessor〉.
(b) It sends every object o ∈ S (including name, version,

predecessors vector, and data) such that o.name ∈
R.list, for which o.version 6≤ R.predecessors. If there
are multiple (conflicting) versions of o, it sends all
versions in one, unbreakable message.

3. For every version o received from Xs in the context of an
object set S, requestor Xr does the following:

(a) Loop through all objects w in store, w ∈ Rj , such
that w.name = o.name:
if o.version ≤ Rj .predecessors) then ignore o and
stop loop;
else if w.version ≤ S.predecessors) then delete w;
(else o and w conflict.)

(b) store o.

(c) For every object w in store, such that w.name =
o.name (these must be conflicting versions), link w
to o and mark them as conflicting.

4. Let S = {S1, S2, ..., Sk, T} be object sets for which Xs

sent complete information, where T ⊆ Sk+1 is the com-
pleted (sub)set of objects from the last set Xs attempted
to send. For every object-set S ∈ S obtained, and for
every Ri, split into R′

i = Ri ∩ S and R′′
i = Ri ∩ S. If R′

i
is not empty, merge S.predecessors into Ri.predecessors
and save in R′

i.predecessors. If R′′
i is not empty, main-

tain it as a separate set and initiate R′′
i .predecessors to

Ri.predecessors.

5. (Periodically) go through subsets Ri, Rj and if
Ri.predecessors and Rj .predecessors are identical,
merge them into one subset.

Figure 2: VS Synchronization.

Suppose that the last object for which an update is received
is ’X’. Then all relevant updates on objects ’A’ through ’X’
have been received. That is, although some object, say ’B’,
had no new update during a particular synchronization, the
receiver concludes, by observing the update on object ’X’,
that object ’B’ is up-to-date. Hence, this creates a partition
at the receiver into two ranges. ’A’ though ’X’ are up-to-
date, and ’Y’ through ’Z’ are not. This property continues
to hold as partitions split and merge.

Consider two replicas Xr and Xs performing a synchroniza-
tion. Xs has q objects with updates that Xr is missing.
Let Xr have k partitions in its store, Xs have m partitions.
First, Xr sends Xs a description of its knowledge. This com-
prises of a collection of pairs (R.list, R.predecessors), each
describing the versions in one partition, R. Each partition
description contains one version vector, and two values that
bound the range of objects in the partition. In total, Xr

sends Xs
eO(k × R) bits. In response, Xs sends q objects,

and up to m object set descriptors of the partitions that
contain them. The total communication complexity here is
eO(q +m×R) bits. Both Xr and Xs send at most eO(N ×R)
overhead bits.



In storage, a replica stores with each object its version, and
with each partition an object set descriptor and a version
vector.

5. CORRECTNESS
The following properties are maintained by our SVS and VS
protocols.

Safety: Every conflicting version received by a requestor is
detected.

Non-triviality: Only true conflicts are alerted.

Liveness: At the end of a complete execution of a synchro-
nization procedure, for all objects, the requestor Xr

stores versions that are identical, or that causally fol-
low, the versions stored by source Xs .

In order to prove them, we make use of a key invariant which
is stated and proven in the following lemma.

Lemma 5.1. For every vector set S, object o ∈ S, and
version o.v, S.predecessors dominates v if and only if v ≺
o.version.

Proof. The initial vector set created by each replica con-
tains all objects empty of updates and a zeroed predecessors
vector. The invariant clearly holds then.

We now prove that the lemma continues to hold through all
the transitions that a replica set goes through.

Consider a transition that occurs when a replica r generates
a new version o.v. Replica r updates the vector set S that
contains o, and merges the new version o.v = o.version into
S.predecessors. Version o.v implicitly dominates preceding
versions by r, possibly on different objects o′. Therefore, for
any version o′.w which is (implicitly) dominated by o.v, we
must show that the lemma is not violated by merging o.v
into S.predecessors. This is indeed the case: If o′ ∈ S.list,
then since r itself knows every update it generated on any
object, o′.w must already be included in S.

The next transition to consider occurs during synchroniza-
tion. A replica r integrates a vector set R it receives with
vector set S it previously stored. This results in splitting S
into two vector sets, S1 = S ∩ R and S2 = S \ R. The set
S2 has S2.predecessors inherited from S.predecessors, and
contains a subset of S’s objects. Hence, the predecessors
invariant continues to hold for it. (S2 might be empty, in
which case the discussion is vacuous.) We now consider the
situation regarding S1. Let o be an object in the subset S1.
S1 contains the most updated version(s) of o found in either
R or S. Multiple versions of o exist in case of conflicts. A
version v of o which has been incorporated in S1 from R
is dominated by R.predecessors. Hence, S1.predecessors
dominates it as well. Likewise, a version v which is incor-
porated from S is dominated by S.predecessors. In this
case, too, S1.predecessors dominates v. Finally, to prove
that the converse hold, consider some version of o satisfying
o.w ≺ S1.predecessors. Then either o.w ≺ S.predecessors

or o.w ≺ R.predecessors. The proof is identical in either
case. In the former (latter) case, o.w is dominated by a ver-
sion of o stored in S (R), say, o.v. Therefore, S1 must store
either o.v, or o.v′ where o.v ≺ o.v′. Hence, o.v′ dominates
o.w. Note, however, that in case of conflicts, there might be
some version o.t in S1 that does not dominate o.w. This is
the reason that it is crucial to link all conflicting versions of
an object and send in one message during synchronization,
so that o.w ≺ S1.predecessors indeed guarantees that o.v′

exists in S1.

Finally, another transition is incurred by merging vector
sets. The pre-requisite for merging is that the predeces-
sor vectors of two sets are identical. Clearly, merging in
this case does not violate the invariant holding separately
for each set.

Theorem 5.2. The protocols above maintain Safety, Live-
ness, and Non-triviality, as defined above.

Proof. These properties easily follow from the fact (proven
in Lemma 5.1) that vector sets predecessors accurately re-
flect the object versions that they contains.

More specifically, let Xr be a replica that requests updates
from a source replica Xs. In order to prove Safety, suppose
that Xr obtains a version o.v that conflicts with a version
o.v′ it previously stored. Denote by R the vector set at
Xr that contains o. Denote by S the vector set that was
received from Xs that contains o.v. By Lemma 5.1, o.v′ ≺
R.predecessors and o.v′ 6≺ S.predecessors, and similarly,
o.v ≺ S.predecessors, o.v 6≺ R.predecessors. Looking at
the synchronization procedure, we see that an alert must be
generated in this case.

Non-triviality holds for similar reasons. Suppose that Xr

obtains a version o.v that causally succeeds a version o.v′

it previously stored. Denote by S the vector set that was
received from Xs that contains o.v. By Lemma 5.1, o.v ≺
S.predecessors, hence o.v′ ≺ o.v ≺ S.predecessors. The
synchronization procedure therefore discards o.v′ in this case,
and does not alert conflicts.

Finally, Liveness holds as follows. Let o.v be a version
that Xs stores. Denote by R the vector set at Xr that
contains o. Denote by S the vector set that was received
from Xs that contains o.v. If o.v ≺ R.predecessors, then
by Lemma 5.1, Xr stores either o.v or a version of o that
causally follows o. Liveness holds in this case. If, on the
other hand, o.v 6≺ R.predecessors, then Xs must send o.v
during synchronization. By the synchronization code, Xr

integrates o.v into storage, and again, liveness holds.

6. RELATED WORK
Weakly consistent, non-transparent replication is supported
in several known systems. The common goal and vision in
these is to alleviate the costs incurred by strongly consistent
replication paradigms, and provide non-stop availability in
weakly connected settings by allowing read-anywhere/write-
anywhere.



Locus [8] has pioneered the vision that optimistic replication
is useful when conflicts are rare, are quickly detected and are
easily resolved. It has also introduced version vectors [1] as
a compact logical clock that captures partial, causal order-
ing between updates and facilitates conflict detection. Locus
stores a version vector with each data object, and communi-
cates this information in order to detect conflicts. Follow-on
systems to Locus, such as Ficus, Rumor, and Roam, utilize
this same technique to detect conflicting file updates [2, 6].
The focus of this work is to reduce the number of vectors
that are stored and are exchanged for replica reconciliation.
Coda [3] uses version vectors similar to LOCUS to support
optimistic replication, although in Coda they are used in a
client-server context, rather than peer-based replication.

In Bayou [7], every replica stores a log of all updates to the
data known to it, as well as ordering information among
the updates. When two replicas synchronize, they exchange
any updates unknown to each other and detect conflicts.
The main emphasis in Bayou centers around a mechanism
for automatic semantic-based conflict detection and resolu-
tion. Additional effort is dedicated in Bayou to form even-
tual agreement on a total order in which updates are applied
from the log. Bayou clients do not require to wait for con-
flict resolution or for update ordering to converge. A client’s
update is submitted to one of the replicas, and is considered
tentative. It may be applied locally and the result can be
read by clients right away. However, a tentative update may
be rolled back later and re-executed at a different position in
the total order. Bayou uses a primary base commit protocol
in order to stabilize the order of updates. Overall, the is-
sues of semantic conflict resolution, as well as total ordering
of updates, which are central to Bayou, are orthogonal to
the topic of discussion in this paper. However, an aspect of
the Bayou storage management is of relevance. The storage
infrastructure supports three logical partitions of the log, a
tentative part, a committed or stable part, and a garbage-
collected omitted part. Bayou introduced the idea of com-
pactly representing each part using one vector (called the
O vector, the C vector, and the F vector, respectively) con-
taining the maximal update counter from each replica. This
works in Bayou because each of the three log parts contains
a complete prefix, and hence, it is possible to represent it
using the maximal counter from each replica. The compact
vector is used for detecting missing updates during replica
synchronization, but not for conflict resolution. The idea
of representing a set of version using compact vectors forms
the basis of our vector sets method.

Our work reflects the replication management scheme of Mi-
crosoft’s WinFS system. A description of the full WinFS
architecture and design is provided in [5]. A preliminary
write-up of the WinFS replication management has been
provided by Malkhi et al. in [4]. The previous write-up con-
centrates on a bundling mechanism called PVE (predecessors
vectors with exceptions), that groups together all objects
and represents their state in one knowledge version vector.
The current paper focuses on VS, which enhances PVE in
a number of important ways. As in PVE, VS uses a sin-
gle vector counts updates made by the replicas on all data
objects. VS differs from PVE in its handling of disrupted
synchronization. PVE handles disrupted synchronization by
introducing exception versions, whose count is unbounded.

This is the source of the theoretically unbounded overhead
in PVE. Thus, whereas PVE has an unbounded worst case
complexity, VS has a worst-case cost no greater than version
vectors, since in the extreme, every object holds one inde-
pendent vector. This dramatically improves the complexity
under settings of difficult connectivity. Furthermore, in most
normal situation, SV will perform as well as PVE, which is
much better. We note that efficiency comes at no added
complication. To the contrary, VS is simple and elegant,
and avoids many of the complexities associated with excep-
tion versions. Finally, the VS mechanism has potentially
wide applicability as a mechanism for compactly handling
synchronization of arbitrarily overlapping groups of objects.
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