Brief Announcement: Chasing the Weakest
System Model for Implementing {2 and
Consensus

Martin Hutle!3, Dahlia Malkhi?, Ulrich Schmid?®, and Lidong Zhou?

! Ecole Polytechnique Fédérale de Lausanne (EPFL)
2 Microsoft Research
3 Vienna University of Technology, Embedded Computing Systems Group 182-2

The chase for the weakest system model that allows to solve consensus has
long been an active branch of research in distributed algorithms. To circumvent
the FLP impossibility in asynchronous systems, many models in between syn-
chrony and asynchrony have been proposed over the years. Of specific interest
is the chase for the weakest system model that allows the implementation of an
eventual leader oracle {2, and thus also enables consensus to be solved.

Recently, Aguilera et al. [ADGFT04] and Malkhi et al. [MOZ05] presented
two system models which are weaker than all previously proposed models where
{2 can be implemented. The former model assumes unicast steps and at least
one correct process with f outgoing eventually timely links. The latter assumes
broadcast steps and at least one correct process with f bidirectional but moving
eventually timely links. Consequently, those models are incomparable.

Our main result in the full paper [HMSZ05:TR] shows that {2 can be imple-
mented in a system with at least one process with f outgoing moving eventually
timely links, assuming either unicast or broadcast steps. Our construction seems
to solve consensus (via {2) in the weakest system model known so far.

Definition 1 (The weak model S7).).

Informally, a omoving-f-source is a correct process that, eventually, if it
sends a message to all other processes at time t, at least f of these messages
are timely. Our system Sﬁ assumes the existence of at least one omoving-f-
source. All other links can be totally asynchronous.

Theorem 1. It is possible to implement (2 in system Sfj.

We also provide matching lower bounds for the communication complexity
in this model, which are based on an interesting “stabilization property” of infi-
nite runs. Those results reveal a price to be paid for the relaxation of synchrony
properties, compared, e.g., with the last algorithm in Aguilera et al. [ADGFT04]
where only f links are required to carry messages forever. Thus, these results
indicate an interesting tradeoff between synchrony assumptions and communi-
cation complexity.

Theorem 2. For alln > f+1 > 2, in a system Sﬂ with reliable links and n
processes where up to f processes may crash, any implementation of {2 requires
at least "z—f links to carry messages forever in some run. This holds even when
every process is a perpetual moving-f-source, and § is known.



In the full paper [HMSZ05:TR] we give an algorithm that matches the £2(nf)
lower bound, i.e., where only O(nf) links carry messages forever.

The Algorithm for Sy;. We now provide an informal description of the main
ingredients of our solution. The algorithm bears similarities to the algorithm of
[ADGFTO04], with the following important distinctions: It introduces suspicion
sequence-numbers, and the agreement on suspicions is done on a per-sequence-
number basis.

The algorithm works as follows: Every process p periodically sends ALIVE
messages with increasing sequence numbers (seg,) to all. Every receiver process
¢ maintains a receiver-sequence number (rseq,), and expects to receive an ALIVE
message with a sequence number matching rseq, from every other process p
within a timeout period. A timer is used for terminating the wait; both rseq,
and the timeout value are incremented when the timer expires.

Every receiver process ¢ maintains an array countery[p|, which essentially
contains the number of suspicions of sender p encountered at ¢ so far: The
sender p is suspected at g if ¢ is notified of the fact that at least n — f receivers
experienced a timeout for the same sequence number s. This notification is done
via SUSPECT messages, which are sent to all by any receiver process that experi-
enced a timeout for sender p with sequence number s. In addition, counter values
are piggybacked onto ALIVE messages. If a larger counter value for process p is
observed in any ALIVE message, counter,[p] adopts this value. The process p = ¢
with minimal counter value in countery[p] (or the minimal process id in case of
several such entries) is elected as ¢’s leader.

Informally, the correctness of the algorithm follows from the following rea-
soning: At the time the ¢moving- f-source becomes a moving- f-source, at least
f outgoing links of the source p carry timely messages at any time. Thus, even-
tually, it is impossible that the quorum of n — f SUSPECT messages is reached
for p for any sequence number. Note that this even holds true if some of the
f timely receiver processes have crashed. Consequently, all processes stop in-
creasing the counter for process p, whereas the counter of every crashed sender
process keeps increasing forever since every receiver obviously experiences a time-
out here. Since the counter values are continuously exchanged via the content of
the ALIVE messages, eventually all processes reach agreement upon all counters
that have stopped increasing. Hence, locally electing the process with minimal
counter indeed leads to a correct implementation of (2.

References

[ADGFTO04 ] Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Proc. PODC 04, ACM
Press (2004) 328-337

[MOZ05 ] Malkhi, D., Oprea, F., Zhou, L.: 2 meets paxos: Leader election and stability without
eventual timely links. In: Proc. DISC 05, Springer-Verlag (2005)

[HMSZ05: TR ] Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model for
implementing omega and consensus. Research Report 74/2005, Technische Universitat Wien,
Institut fiir Technische Informatik, Treitlstr. 1-3/182-2, 1040 Vienna, Austria (2005)



