
Wait-Free Regular Storage from Byzantine Components

Ittai Abraham∗ Gregory Chockler† Idit Keidar‡ Dahlia Malkhi§

July 18, 2006

Abstract

We consider the problem of implementing a wait-free regular register from storage compo-

nents prone to Byzantine faults. We present a simple, efficient, and self-contained construction

of such a register. Our construction utilizes a novel building block, called a 1-regular register,

which can be efficiently implemented from Byzantine fault-prone components.

1 Introduction

In recent years, many systems that construct storage solutions from components prone to Byzantine

faults in asynchronous settings have been suggested, e.g., [10, 11, 7, 1, 4, 14, 9]. Such systems can

be formally modeled using an asynchronous shared memory model where up to a threshold t

out of n memory objects may fail by being non-responsive or returning arbitrary values [6]; this

failure model is called non-responsive arbitrary (NR-Arbitrary) [6]. Like most of the aforementioned

systems, e.g., [10, 7, 4, 14], we assume that n ≥ 4t + 1. In previous work [1], we show that this

assumption is necessary for implementations as efficient (in terms of round complexity) as the one

in this paper.

This paper focuses on constructing a wait-free single-writer regular register. Wait-freedom refers

to independence of clients from one another’s liveness and activity, but not from the memory objects

from which the register is built, n − t of which should be correct. A regular register guarantees

∗School of Computer Science and Engineering, The Hebrew University of Jerusalem.
†Lab for Computer Science and Artificial Intelligence. Massachusetts Institute of Technology.
‡Department of Electrical Engineering, The Technion – Israel Institute of Technology.
§School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel, and Microsoft Research,

Silicon-Valley.

1

that every read operation returns either the register’s value before the read is invoked (the value

written by the last write operation that returns before the read is invoked, or the initial value if

no value is written before the read) or a value that is written concurrently with the read [8]. A

regular register is weaker than an atomic one, as its history is not always linearizable. Our focus on

regular registers is motivated by recent studies that indicate that storage with regular semantics is

sufficient in many cases [3, 15, 1]. But if atomicity is required, it is straightforward to extend our

protocol to provide atomic semantics.

Most existing wait-free Byzantine-resilient storage constructions, e.g. [6, 10, 1], implement safe

registers. A safe register guarantees that every read operation that does not overlap any write

returns the latest written value, or the initial value if no value was written; the result of a read

operation that overlaps a write operation may be arbitrary [8]. In contrast to regular registers, safe

registers, by themselves, are too weak to be directly useful for applications. The focus on these

semantics has been justified by the existence of known reductions to wait-free safe registers from

regular and atomic ones [8]. However, this approach results in constructions that are not tailored to

the requirements of a distributed storage system, since traditional constructions of strong wait-free

objects from weaker ones, e.g., [12, 8, 16, 17, 5], were not designed with distributed storage in mind.

In particular, such constructions typically focus on bounding the memory size rather than reducing

the number of shared memory accesses. In a distributed setting, however, every memory access

incurs a latency of two message delays, whereas storage space is typically abundant. Therefore,

a practical distributed construction should focus on simplicity and reducing communication costs,

even at the cost of storing timestamps along with values1. This is precisely the approach we take

in this paper.

We present a complete wait-free construction of a single-writer regular register. Our construc-

tion is simple, efficient, and feasible in distributed storage environments. We give a modular

construction by introducing a novel building block, called a 1-regular register. A 1-regular register

is regular as long as a read operation overlaps at most one write operation. That is, every read

operation that overlaps at most one write returns either the register’s value before read is invoked

1Like previous constructions in this setting [10, 7, 11, 1, 4], we use unbounded timestamps. It is possible to modify
our algorithms to employ bounded timestamps by using garbage collection techniques. However, the discussion of
such techniques is beyond the scope of this paper.

2

or the one written by the overlapping write. A read that overlaps more than one write may return

an arbitrary value. In Section 4, we give an efficient implementation of a wait-free 1-regular register

from components prone to Byzantine faults. Read and write operations are both emulated in a

single round, and the space required in each base object is twice that of safe register constructions

in this model [10]. Then, in Section 5, we give a simple and efficient implementation of a wait-free

single-reader single-writer regular register using 1-regular ones.

2 Related Work

Most wait-free Byzantine-fault-tolerant register constructions for distributed settings provide only

safe semantics [10, 6, 1]. Others achieve stronger semantics at the cost of weaker (non-wait-free)

termination guarantees [11, 2, 1]. PASIS [4] achieves atomic semantics, but does not allow over-

writing of objects, and instead stores, as part of an object’s state, all its previous versions.

Wait-free constructions of registers with strong semantics (regular and atomic) from weaker

ones have been an actively researched area for several decades [12, 8, 16, 17, 5]. Such constructions

are typically fairly elaborate. Our work benefits from several techniques and ideas introduced by

Peterson [12] and Tromp [16]. These two papers construct atomic registers from safe bit tracks and

additional control bits, and optimize the number of shared memory bits as well as the number of

shared memory accesses employed. For example, Tromp constructs an atomic register from 4 safe

registers (holding values, but not timestamps), and 8 safe bits; his read operation makes up to 5

memory accesses (in 4 rounds), and his write requires 3. In contrast, our read emulation always takes

3 memory access rounds, and the write emulation always takes 2. Although these two algorithms

do not solve the problem we address in this paper (implementing a reliable shared register from

Byzantine components), they could be used, in lieu of the algorithm we give in Section 5, on top

of known constructions of safe registers in Byzantine settings, e.g., [10], which are similar to the

1-regular register construction we give in Section 4. However, our overall solution is simpler, and

requires fewer memory access rounds as noted above, partly due to our use of timestamps, which

is a favorable tradeoff in distributed storage settings.

Our 1-regular register differs from the pseudo-regular register of Pierce and Alvisi [13] in that

the latter is allowed to return a special value ⊥ if a read overlaps any number of writes, but may

3

never return incorrect values, whereas a 1-regular register must ensure regularity as long as one

write overlaps the read, and is otherwise allowed to return arbitrary values.

3 The System Model

We consider an asynchronous shared memory system consisting of a collection of processes inter-

acting with a finite collection of n objects. Up to t < n/4 of the objects may suffer NR-Arbitrary

failures [6], i.e., may fail to respond to an invocation, or may respond with an arbitrary value. Any

number of the processes may fail by stopping. Due to space limitations, we do not detail the formal

system model; further details may be found in [8, 6, 1].

A register is an object type with a value domain Vals, an initial value v0 ∈Vals, and two

invocations: read, whose response is v ∈Vals, and write(v), v ∈Vals, whose response is ack. A

read/write register is single-reader single-writer (SRSW) if only one process can write to it and

only one can read from it; a register is multi-reader single-writer (MRSW) if multiple processes can

read it.

4 Wait-free t-Resilient 1-Regular Register Construction

In order to distinguish between the emulated register’s interface and that of the underlying base

registers, we henceforth denote the emulated read (resp. write) operation as read (resp. write).

The protocol uses an underlying layer that invokes operations on different base objects in

separate threads. The notation invoke write(Xi, v), (resp. invoke x[i] ← read(Xi)) indicates

that a write(v) operation on register Xi (resp. a read of register Xi whose response will be stored

in local variable x[i]) is invoked in a separate thread by the underlying layer. Since some of the

base objects may be non-responsive, a write or read operation may return while there are still

pending invocations to base objects that did not respond. The underlying layer keeps track of which

invocations are pending after the high-level write or read returns, and uses this information in

order to ensure well-formedness, i.e., that a process does not invoke an operation on an object as

long as there are pending invocations of the same process on the same object. If a new operation

(read or write) is invoked on a base object while a previous operation on the same object is

4

pending, the underlying layer does not invoke the new operation, and instead denotes that it is

enabled. Only the most recent enabled operation is stored. An enabled operation is invoked if

and when a pending one returns. If a new invocation is enabled on some object when an older

pending invocation responds, the underlying layer discards this response and does not deliver it to

the high-level write or read. (See, e.g., [6, 1], for detailed implementations of such layers.)

Figure 1 presents an implementation of a wait-free MRSW 1-regular register from n > 4t wait-

free MRSW regular base registers, up to t of which can incur NR-arbitrary faults. Each of the

n base registers, Xi, is a cyclic buffer holding two timestamp-value pairs, Xi[0] and Xi[1]. Each

write(v) operation chooses an increasing timestamp ts and over-writes one of the components,

with the pair 〈ts, v〉, alternating between Xi[0] and Xi[1], while the previous value and timestamp

are re-written to the other component. Thus, every read operation that overlaps at most one

write samples either Xi[0] or Xi[1] while its value is not being changed (it may be overwritten,

but with a value matching the previous one). Note that local variables are static, i.e., they are not

reset in each invocation of write.

The read emulation reads from at least n − t base registers into the array x[1 . . . n], where

element i stores the pair corresponding to the values read from Xi[0] and Xi[1] (lines 2–3). The

candidates for returning are the read timestamp-value pairs. In line 4, the set of candidates from

each component j is set to include only values that appear in the jth component of at least t + 1

elements of x, which ensures that they were read from at least one correct base object. Returning

the highest timestamped candidate in these sets (line 5) ensures 1-regularity. If there is no such

value, then there must be at least two writes overlapping the read, and it may return an arbitrary

value (line 6).

We now formally prove the algorithm’s correctness.

Theorem 1. The algorithm in Figure 1 implements a wait-free 1-regular register from n > 4t

regular base registers, at most t of which can incur NR-arbitrary faults.

Proof. Wait-freedom is immediate, since no process waits for more then n − t responses, and at

most t objects can be non-responsive. We now show 1-regularity.

Consider a read invocation r1. Let c be the timestamp-value pair written by the last write

invocation that completes before r1 is invoked, or 〈0, v0〉 if none was invoked; c is written to some

5

Types: TSVals= Integers×Vals, with selectors ts, val
Shared objects: regular registers Xi[2] ∈ TSVals, initially Xi[0] = Xi[1] = 〈0, v0〉

write Emulation

Local variables (writer):
x[2] ∈TSVals, initially x[0] = x[1] = 〈0, v0〉
turn ∈ {0, 1}, initially 0
ts ∈Integers, initially 0

write(v):
ts ← ts + 1
x[turn] ← 〈ts, v〉
for 1 ≤ i ≤ n, invoke write(Xi, x)
wait for n − t responses
turn ← 1−turn
return ack

read Emulation

Local variables (reader):
x[1 . . . n][2] ∈ TSVals ∪{⊥}
C[2] set of TSVals

read:
1: for 1 ≤ i ≤ n, j = 0, 1, x[i][j] ← ⊥
2: for 1 ≤ i ≤ n, invoke x[i] ← read(Xi)
3: wait for n − t responses
4: for j ∈ {0, 1}, C[j] ← {c ∈TSVals : |{i : x[i][j] = c}| ≥ t + 1}
5: if (C[0] ∪ C[1] 6= ∅) then return c.val: c.ts = max{c′.ts : c′ ∈ C[0] ∪ C[1]}
6: return an arbitrary value in V als

Figure 1: Wait-free t-resilient 1-regular MRSW register emulation.

component j ∈ {0, 1}. (If c = 〈0, v0〉, let j = 1.) There are three cases to consider. (1) If no

write invocation overlaps r1, then throughout r1, c appears in at least n − 2t ≥ 2t + 1 correct

base objects’ jth component, and hence is read at least t + 1 times by r1 and is included in C[j].

Moreover, no higher-timestamped values appear in correct objects, hence no higher timestamped

value appears in either C[0] or C[1]. Therefore, c is returned in line 5. (2) Assume exactly one

write invocation, w1 overlaps r1. Since the writer alternates between components, this invocation

does not change the value of the jth component. Therefore, as before, c is included in C[j], and

has the highest timestamp in C[j]. If c is not returned in line 5, then the return value is a correct

higher-timestamped candidate from C[1− j], which must be the one written by w1. Hence, in both

of these cases, regularity is ensured. (3) If more than one write overlaps r1, the read is allowed

to return an arbitrary value.

6

Shared objects:

SRSW safe register R ∈ {0, 1}, initially 0, writable by reader, readable by writer
SRSW 1-regular registers Y [2] ∈ TSVals, initially 〈0, v0〉, writable by writer, readable by reader

write Emulation

Local variables (writer):
ts ∈ Integers, initially 0
r ∈ {0, 1}

write(v):
ts ← ts + 1
r ← read(R)
write(Y [1 − r], 〈ts, v〉)
return ack

read Emulation

Local variables (reader):
r ∈ {0, 1}, initially 0
x[2] ∈TSVals

read:
x[r] ← read(Y [r])
r ← 1 − r
write(R, r)
x[r] ← read(Y [r])
return x.val : x.ts = max{x[i].ts : i ∈ {0, 1}}

Figure 2: The SRSW wait-free regular register construction.

5 Wait-free Regular Register Construction

We now present a very simple construction of an SRSW regular register using two 1-regular SRSW

registers, Y [2], and one safe bit, R. (A multi-reader regular register can be constructed using m

copies of this register. Note that in a distributed storage setting, the m copies can be accessed

by the writer in parallel, whereas each reader accesses a single copy.) The algorithm appears in

Figure 2. As before, we denote the emulated register’s operations write and read.

The algorithm exploits 1-regular semantics by ensuring that at most one write invocation over-

laps each read invocation to either Y [0] or Y [1]. This is controlled using the shared safe bit R,

which indicates which of the two 1-regular registers is potentially being read by the reader. The

writer reads R, and then writes the new value to Y [1 − R] along with a monotonically increasing

timestamp. The reader reads both Y [1] and Y [0], and returns the higher-timestamped value.

The following lemma shows that at most one write invocation overlaps each read invocation to

either Y [0] or Y [1].

Lemma 1. Each read of a 1-regular base register Y [i] overlaps at most one write operation.

Proof. Consider a basic read operation, r1, on register Y [i]. Consider the first time t at which a

write operation on Y [i] completes after r1 starts. Now consider a write invocation, w1, invoked

7

after t and before r1 completes. When w1 reads R, it is not being written (because the reader is

currently reading Y [i]), and therefore, by safety, returns i. Therefore, w1 writes to Y [1 − i].

We are now ready to prove our main theorem:

Theorem 2. The algorithm in Figure 2 implements a SRSW wait-free regular register from two

wait-free 1-regular SRSW registers and one safe register.

Proof. Wait-freedom is immediate, by wait-freedom of the base objects. We now prove regularity.

Consider a read invocation r1. By Lemma 1, each read operation invoked by r1 on one of the base

registers Y [·] overlaps at most one write operation to the same base register. Hence, by 1-regularity,

each of the base registers Y [·] responds with a correct value. Consider the register’s value before

r1 is invoked (either the value written by the last write that completes before r1 is invoked, or

〈0, v0〉 if none was invoked). This value is written to some Y [i]. Therefore, when r1 reads Y [i],

it obtains either this value or a later (higher-timestamped) one. The fact that read returns the

higher-timestamped value it reads ensures regularity.

6 Conclusions

Constructions of strong (regular and atomic) registers from weaker ones are typically complex.

Previous implementations of wait-free registers from Byzantine shared-memory either store the

register’s entire history of values as part of the register’s state [4], or provide only safe semantics [10,

6, 1], which, by themselves, are too weak to be of use to applications.

In this paper, we presented a new abstraction called a 1-regular register. On the one hand,

this abstraction is sufficiently strong to support a very simple, easy to follow, and efficient imple-

mentation of a regular register. On the other hand, 1-regular registers are easily implementable

in distributed Byzantine fault-prone settings, virtually as efficiently as safe registers: our 1-regular

register construction emulates each read or write operation in a single round of invocations to base

objects, without storing the register’s entire history; it stores only the last two values written to

the register, whereas safe register implementations [10] store one.

There may well be additional settings where implementing 1-regular registers will be (almost)

as easy and efficient as implementing safe ones, and therefore, this abstraction as well as the

8

construction of regular registers from 1-regular ones may have broader applicability.

Using 1-regular registers, we constructed a regular register. It is easy to extend our construction

to provide atomic semantics. The reader simply needs to recall the latest returned value and its

timestamp. If a later read returns a smaller timestamp, then the reader returns the stored value.

References

[1] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzantine Disk Paxos: Optimal re-

silience with byzantine shared memory. In 23rd ACM Symposium on Principles of Distributed

Computing (PODC), 2004. Full version to appear in Distributed Computing.

[2] H. Attiya and A. Bar-Or. Sharing memory with semi-byzantine clients and faulty storage

servers. In The 22nd Symposium on Reliable Distributed Systems (SRDS), 2003.

[3] E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1):1–20, 2003.

[4] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient byzantine-tolerant

erasure-coded storage. In International Conference on Dependable Systems and Networks

(DSN), June 2004.

[5] S. Haldar and P. Vitanyi. Bounded concurrent timestamp systems using vector clocks. J.

ACM, 49(1):101–126, 2002.

[6] P. Jayanti, T. Chandra, , and S. Toueg. Fault-tolerant wait-free shared objects. J. ACM,

45(3):451–500, 1998.

[7] S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Responsive security for stored data.

In Proceedings of the International Conference on Distributed Computing Systems (ICDCS),

2003.

[8] L. Lamport. On interprocess communication – Part II: Algorithms. Distributed Computing,

1(2):86–101, 1986.

9

[9] S. Lin, Q. Lian, M. Chen, and Z. Zhang. A practical distributed mutual exclusion protocol

in dynamic peer-to-peer systems. In 3rd International Workshop on Peer-to-Peer Systems

(IPTPS’04), 2004.

[10] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–213,

1998.

[11] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzantine storage. In Proceedings of the 16th

International Symposium on Distributed Computing (DISC), October 2002.

[12] G. L. Peterson. Concurrent reading while writing. ACM Transactions on Programming Lan-

guages and Systems, 5(1):46–55, 1983.

[13] E. Pierce and L. Alvisi. A framework for semantic reasoning about byzantine quorum systems.

In Brief announcement in Twentieth ACM Symposium on Principles of Distributed Computing

(PODC), 2001.

[14] R. Rodrigues and B. Liskov. Rosebud: A Scalable Byzantine-Fault-Tolerant Storage Archi-

tecture. Technical Report MIT-LCS-TR-932, MIT Laboratory for Computer Science, 2004.

[15] C. Shao, E. Pierce, and J. Welch. Multi-writer consistency conditions for shared memory

objects. In International Symposium on Distributed Computing (DISC). Springer-Verlag, 2003.

[16] J. Tromp. How to construct an atomic variable. In LNCS 392, Proc. 3rd International Work-

shop On Distributed Algorithms, pages 292–302. Springer-Verlag, 1989.

[17] K. Vidyasankar. Concurrent reading while writing revisited. Distributed Computing, 4:81–85,

1990.

10

	Introduction
	Related Work
	The System Model
	Wait-free t-Resilient 1-Regular Register Construction
	Wait-free Regular Register Construction
	Conclusions

