
The Julia Content Distribution Network
Danny Bickson* and Dahlia Malkhi**

Abstract— Peer-to-peer content distribution networks are
currently being used widely, drawing upon a large fraction
of the Internet bandwidth. Unfortunately, these applica-
tions are not designed to be network-friendly. They opti-
mize download time by using all available bandwidth. As a
result, long haul bottleneck links are becoming congested
and the load on the network is not well balanced.

In this paper, we introduce the Julia content distribution
network. The innovation of Julia is in its reduction of the
overall communication cost, which in turn improves net-
work load balance and reduces the usage of long haul links.
Compared with the state-of-the-art BitTorrent content dis-
tribution network, we find that while Julia achieves slightly
slower average finishing times relative to BitTorrent, Julia
nevertheless reduces the total communication cost in the
network by approximately 33%. Furthermore, the Julia
protocol achieves a better load balancing of the network
resources, especially over trans-Atlantic links.

We evaluated the Julia protocol using real WAN deploy-
ment and by extensive simulation. The WAN experimen-
tation was carried over the PlanetLab wide area testbed
using over 250 machines. Simulations were performed
using the the GT-ITM topology generator with 1200 nodes.
A surprisingly good match was exhibited between the
two evaluation methods (itself an interesting result), an
encouraging indication of the ability of our simulation to
predict scaling behavior.

I. INTRODUCTION

Peer-to-peer content distribution networks are becom-
ing widely utilized in today’s Internet. The popular file
sharing networks—e.g. eMule, BitTorrent and KaZaA—
have millions of online users. Current research shows
that a large fraction of the Internet bandwidth is con-
sumed by these applications [10]. Most existing solutions
optimize download time while ignoring network cost,
and put network load balance only as a secondary goal.
As these networks become more popular, they consume
increasing amounts of network bandwidth and choke the
Internet. Eventually, their own performance deteriorates
as a result of their success.

The approach we put forth in this paper takes network
cost and balance into account from the outset. As in
most existing solutions, the fundamental structure of our

* School of Computer Science and Engineering, The Hebrew
University of Jerusalem. daniel51@cs.huji.ac.il.

** Microsoft Research Silicon Valley and School of Computer
Science and Engineering, The Hebrew University of Jerusalem.
dalia@microsoft.com.

content delivery algorithm relies upon an origin node (or
nodes) which stores a full copy of the content and which
serves pieces of the content to a set of downloading
clients.

The clients subsequently collaborate to exchange
pieces among themselves. The novelty in our approach
is that communication partners as well as the pieces ex-
changed with them, are chosen with the aim of reducing
overall network usage, while at the same time, achieving
fast download time. All of this is accomplished while
maintaining tit-for-tat load sharing among participating
nodes, which is crucial for incentivizing client participa-
tion.

Our consideration of the total network costs for con-
tent dissemination adopts similar goals to those con-
sidered by Demers et al. [7] in the context of gossip
algorithms. Their spatial distribution algorithm is aimed
to reduce the communication costs of disseminating a
file in a network. Their basic idea is to prefer closer
nodes: this is done by setting the cumulative probability
of contacting a node to diminish exponentially with
distance. Simulation results show that this technique
significantly reduces the communication work, especially
over long communication links. Our distance-aware node
selection strategy closely follows this spatial distribution
algorithm, with two important distinctions. First, our
node selection policy changes over time, and adapts
to the progress of the algorithm. Second, we vary the
amount of data that is exchanged between nodes, and
adapt it to the progress of the download.

The Julia algorithm has its roots in an earlier algorithm
proposed by us in [2] for disseminating content over a
structured hypercube topology. In this work, we propose
a new algorithm to handle arbitrary network topologies,
provide simulation results to confirm the design goals,
and highlight real WAN deployment results over the
PlanetLab [5] testbed.

Encouraging results are exhibited using two comple-
mentary evaluation methods, extensive simulations and
a thorough PlanetLab testing over WAN. The two are
compared against the BitTorrent [6] network under sim-
ilar settings. Both simulation results and real planetary
scale testing confirm our design goals: the network load
balance over nodes and links shows improvement, while
at the same time the communication cost is significantly

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 37

WORLDS ’05: Second Workshop on Real, Large Distributed Systems

reduced. However, our system pays little in terms of
running time.

The rest of this paper is structured as follows: In sec-
tion II, we present the Julia algorithm. Next, we discuss
protocol implementation in section III. In section IV, we
report experimental results from both simulations and
the PlanetLab test-bed. Finally, in section V, we present
an improvement to the Julia algorithm and discuss its
feasibility.

II. THE JULIA ALGORITHM

In this section, we introduce the Julia content distri-
bution algorithm, which aims for the efficient transfer of
large files (at least tens of megabytes).

One of the first design decisions we had to make
in Julia is whether to use some predefined structured
communication overlay. We favored an unstructured,
constantly changing mesh, which is resilient against
failures and requires no maintenance. In terms of data
dissemination, having an unstructured mesh means that
any pair of nodes can choose to exchange information.
In the remainder of this section, we discuss the strategy
for exchanging file pieces among nodes.

The main emphasis in the design of the Julia pro-
tocol is to reduce the overall communication cost of
a file download, and to incur a balanced load on the
network, without significantly impairing download com-
pletion time significantly. These design goals led to a
probabilistic algorithm that determines which node to
contact at every step. As in the spatial gossip algorithm
[7], we prefer downloading from closer nodes whenever
possible. However, the Julia node selection strategy is
unique in that is adapts itself to the progression of the
download. This adaptation is done roughly as follows.
At the start of the download, the nodes do not have
any information regarding the other nodes’ bandwidths
and latencies. Hence, each node will select nodes for
pieces-exchange at random. As the download progresses,
the nodes gossip and gather statistics about the network
conditions. This knowledge is than used in order to
contact progressively closer nodes.

In addition to the distance, we also vary the amount
of data that is exchanged between interacting nodes: at
the beginning of the download, we send a small number
of pieces across each connection. As the download
progresses — and as the quality of connections we utilize
improves, we gradually increase the amount of data sent.

More formally, we have a file for download F , of
size |F | = k parts. Let x denote the number of pieces a
node holds. The progress of a node is defined as x

k . The
distance between nodes refers to the communication cost
between them (the concrete parameters that determine

the distance are an implementation matter; more on this
in Section III. We use Di to denote the maximal distance
from node i to any other node.

The algorithm: Each node performs the selection of
other nodes based on the following algorithm. Intuitively,
we select nodes with an exponentially diminishing dis-
tance relative to the download progress.

Formally, we define Qi(d) as the set of nodes at a
distance d or less from a node i. Qi(d) is known to i
approximation only based upon the statistics gossiped
during the download. Let node i have progress x/k. At
each step of the algorithm, node i sets d to a value that
reflects the download progress, using the exponential
distribution formula d = d(x/k) = Die

−x/k. Node
i then selects its next exchange partner uniformly at
random from among all nodes in Qi(d), i.e., a node at
distance up to d.

In this way, x/k = 0, at the start of the download,
so that the initial selection is made from the entire
universe of nodes Qi(Di). When the download progress
is about a halfway through, nodes from the closer group
Qi(Die

−1/2) are chosen. And so on, until close to the
completion of the download, only very close nodes are
selected.

III. THE IMPLEMENTATION

We implemented a content distribution client in C++
based on the Julia algorithm. The client is implemented
using a single thread server queue. The implementation
code consists of approximately 15,000 lines of code, and
uses TCP for the transport layer. To improve perfor-
mance, the client maintains several (we used six) parallel
connections. That is because larger number of TCP par-
allel connections result in poor download performance1.
The decision of which node to contact next is made using
the Julia algorithm.

One of the questions we had to answer when applying
the Julia algorithm was how to calculate network dis-
tances. Different applications might have different views
about distance. For example, streaming applications gen-
erally regard the communication latency as the distance,
whereas file sharing applications usually consider the
bandwidth as the main parameter to optimize. Other
possible metrics include the number of hops or com-
monality of DNS suffixes. Additionally, local area links
are cheaper to use than metropolitan links; metropolitan
are cheaper than national links; and so on.

Our goal of reducing the communication cost dictates
that we must use a combination of these parameters. We

1The same is done in the BitTorrent system where the actual
downloading set of neighbors (out of the total neighbors set) is of
size 4-5 [6]

USENIX Association38

took a similar approach for the Tulip routing overlay [1],
and achieved a near optimal performance of routing.
In Julia, we measure distance with a combination of
bandwidth and latency. Note that latency is a good
estimate of a link’s physical length and, therefore, of its
cost. However, we do not want to take only latency into
account because this might interfere with the selection
of high-bandwidth links.

Estimating distances in practice is another pragmatic
challenge. The Julia client starts the data dissemination
process with no knowledge of network conditions. Since
we decided not to spend any extraneous bandwidth on
active network probing, network conditions are discov-
ered by passively monitoring the transfer rate of up-
loaded and downloaded file pieces. As information about
network links is gathered, the client can apply the Julia
algorithm to decide which neighbors to communicate
with out of the known nodes. Note that this gradual
process fits well with the Julia protocol, since early node
selection in Julia inherently has great flexibility.

One important issue left out of the discussion so
far is the strategy for selecting file pieces to send
and receive. A Julia client maintains a bitmap of the
pieces it has obtained so far. This bitmap is used in an
exchange in order to ensure that only missing pieces
are transmitted. Additionally, the client locally records
the bitmaps that other clients have offered in previous
rounds. This information is used for estimating the
availability of file pieces throughout the network. As
shown in [9], local estimation of file piece frequencies is
a good approximation for global knowledge of the real
frequencies.

Among those pieces missed by an exchange partner,
our strategy is to send the rarest piece first. We adopted
this strategy as a result of extensive experimentation with
several selection policies [3].

IV. EXPERIMENTS

A. The Simulation Method
The following are the performance measures we use

in this paper: The download finishing time of a node is
the time from the start of the download until the node
has completely downloaded all file pieces. Fair sharing
is the ratio between the number of file pieces the node
forwards to the number of file pieces it receives. (In [4]
this is called node stress.) Communication work is the
product of file pieces traveled on a link and the link cost,
summed over all the links. (In [4] this is called resource
usage.)

Our simulation is done using a synchronous discrete
event simulation we wrote, consisting of 3,000 lines of
Java code. For the topology, we used the Georgia Tech

topology generator (GT-ITM) [8] to create a transit-stub
topology. We assigned stub-stub and stub-transit links
bandwidth of 5 pieces per round, and transit-transit links
bandwidth of 15 pieces per round. We used the link
latencies, as created by the GT-ITM, to determine the
link cost. The routing over the physical layer was done
using Floyd all-pairs-shortest-path algorithm.

Out of the total of 600 physical nodes, we selected 200
random nodes to participate in the content distribution
network. For each simulation, one source node was
selected at random out of the 200 participating nodes.
Each simulation was repeated at least 10 times and the
results were averaged.

B. The PlanetLab Testing Method

Our PlanetLab test is done with a single source node
storing the file in full, and about 250 nodes download-
ing simultaneously. The source node is used both for
tracking other clients, and for retrieving pieces. Under
a normal load, the source node provides a client that
contacts it one data piece, the rarest, as well as a list
of other nodes that previously connected to it. When the
source node becomes overloaded, it stops serving pieces
and provides only the list of nodes. After contacting
the source node, clients exchange file pieces among
themselves. We used file sizes of 30, 60 and 130Mb
in our tests. Part size was set to 1/2Mb.

C. Preliminary Discussion of Results
It is enlightening to compare the simulation results to

the real WAN experiments. The simulation environment
is only a simplified approximation of a real system:
nodes operate in synchronous rounds; the transmission of
a piece is never disrupted; and all pieces sent in a round
arrive before the start of the next round. Additionally,
there are only two bandwidth categories, slow and fast.
Reality is naturally more complex: No synchronization;
heterogeneous machine capacities and diverse links; and
there are node and network link failures, packet losses,
congestion and unexpected delays.

Nevertheless, as we shall see below, a surprisingly
good match is exhibited in our simulations of the Plan-
etLab settings. This is encouraging, as it suggests good
prediction power for the simulation. The results below
also indicate places where the simulation method may
be improved for better accuracy.

D. Fair Sharing
Figure 1 provides a comparison of fair sharing in Julia

and BitTorrent using both simulation and by deployment
over PlanetLab. Overall, we observe a remarkably close
match between the simulation results and the WAN
measurements. This can be explained by the fact that

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 39

WORLDS ’05: Second Workshop on Real, Large Distributed Systems

fair sharing is an algorithmic property of the protocol,
and does not relate directly to bandwidth, or to the
heterogeneity of the nodes.

The average fair sharing of both algorithms is a little
less than one, which means that, on average, the network
is load balanced. However, we can see that the Julia
protocol provides a better load balancing of nodes, both
for the simulation results and for PlanetLab. Surprisingly,
WAN results show that, in practice, BitTorrent has a
slightly higher fair sharing ratio than predicted. In con-
trast, the Julia client has a better fair sharing ratio than
predicted (that is, closer to 1). We note that fair sharing is
of immense importance for Peer-to-peer networks since
it provides incentive to use the network.

E. Finishing Time

Figure 2 shows the completion times of our exper-
iments. Here, the simulation and the PlanetLab results
exhibit a slightly lower degree of matching than the Fair
Sharing results above.

We speculate that the differences between the finishing
times predicted by simulation and ones experienced
through the PlanetLab tests are because the transit-stub
model we use does not capture all of the PlanetLab
network properties. For example, some machines in
Brazil and Russia were behind lousy links, which made
TCP perform poorly due to the slow start mechanism.
Some of the machines are connected using ADSL, with
asymmetric bandwidth properties, and had a narrow
upload capability. Other machines were heavily loaded
and performed poorly. Our simulation did not capture
those network properties well.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

Number of finished nodes (sorted)

F
ai

r
sh

ar
in

g
ra

tio

BitTorrent vs. Julia − Fair Sharing − Planetlab Results

BitTorrent − Simulation
Julia − Simulation
BitTorrent − PlanetLab
Julia − PlanetLab

Fig. 1. Comparison between simulation and WAN results of fair
sharing (node stress). Fair sharing of 1 means that the node uploaded
the same number of file pieces it downloaded from the network.

0 20 40 60 80 100 120 140 160 180 200
100

200

300

400

500

600

700

800

Number of finished nodes (sorted)

R
ou

nd
 n

um
be

r

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

S
ec

on
ds

BitTorrent vs. Julia

BitTorrent − Simulation
Julia − Simulation

BitTorrent − WAN
Julia − WAN

Fig. 2. Finishing times for 200 nodes using simulation vs. PlanetLab
results. The left Y-axes represent simulation rounds and the right Y-axes
represent time in seconds. Note that the 50 slowest PlanetLab nodes
were not shown in the graph because of their exponentially increasing
finishing times, probably because of very slow or congested machines.

F. Communication Cost

Our evaluation of the total communication cost is
done only by simulation, since on PlanetLab, evaluating
the costs incurred in practice is a challenging problem,
mainly because there is no unified distance measurement.
In our simulation, we used the link latencies as created
by the transit-stub model for link costs.

0 100 200 300 400 500 600 700 800
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Edges (sorted by cost)

C
om

uu
ni

ca
tio

n
co

st

BitTorrent vs. Julia − Communication cost per edge

BitTorrent
Julia

Fig. 3. Total communication cost per edge in simulation. The average
communication cost of transferring a file to a node in the Julia
algorithm is reduced by 33% relative to the BitTorrent algorithm.

Figure 3 shows simulation results of the communica-
tion costs per network link. The y-axis has a logarithmic
cost scale. The x-axis presents the links ordered by their
communication cost. Links with cost zero were removed
from the graph. We can clearly see the advantage of

USENIX Association40

using Julia, resulting in a reduced network load. Sim-
ulation shows that the average communication cost of
transferring the full file into each node is lowered by
33% relative to the BitTorrent algorithm.

We conducted an additional simulation, whose goal
was to evaluate the load incurred on a costly trans-
Atlantic link. To this end, we took two transit-stub net-
works of 600 nodes and connected their backbone using
one link. The links in each network had bandwidth 5
pieces per round for transit-stub, and 15 pieces of round
for stub-stub links. The trans-Atlantic link was assigned
a bandwidth of 150 pieces per round. Two hundred nodes
were selected at random to perform the overlay out of
the total 1,200 physical nodes. We ran both the Julia and
the BitTorrent algorithms to compare the number of file
pieces traveled on the trans-Atlantic bottleneck link. As
expected, this link was used in BitTorrent to transfer as
much as four times the number of pieces relative to Julia.
We conclude that the Julia algorithm has a potential not
only to improve the network load balancing, but also in
reducing traffic over the longer links.

V. CURRENT RESULTS AND FUTURE DIRECTIONS

Based on the feedback we received from both the
simulations and the PlanetLab testings, we are currently
designing an improved version of the Julia algorithm.
The crux of the improvement is as follows: In the basic
Julia algorithm, neighbors are exchanged after the down-
load of each piece. This might create a situation where
a high bandwidth node nearby is exchanged for a slower
node. We try to prevent this situation using a poker game
strategy. The neighbors in our active download set are
modeled as a hand of poker: we evaluate the upload
performance of the neighbors, as we would evaluate
our poker hand. Then, we allow the replacement of any
neighbor with a performance below a certain threshold,
similar to replacing any subset of poker cards out of our
initial hand. We call our modified algorithm the Julia
Poker variant.

This strategy is somewhat similar to the BitTorrent
probing. In BitTorrent, each node probes for the band-
width of one neighbor at a time, from among the fixed
set of neighbors. If a probed node has a higher upload
bandwidth, it is inserted into the active node set, and
the lowest performing node is taken out of the active
set. However, there are two major differences between
the algorithms. In Julia, we allow the replacement of
several nodes out of the active set and not just one at
a time. Furthermore, the set of neighbors is not fixed.
Nodes are selected from the complete network.

We believe our improved algorithm might work better
in practice, since it is more flexible than the BitTorrent

selection of nodes, while at the same time preserving
the Julia algorithm properties of load balancing in the
network. Preliminary simulation results confirming these
predictions are shown in figure 4.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Number of finished nodes (sorted)

R
ou

nd
 n

um
be

r

BitTorrent vs. Julia Poker Variant − Simulation Results

BitTorrent
Julia Poker Variant

Fig. 4. Finishing download times of BitTorrent vs. Julia Poker Variant
using simulation.

Acknowledgements We would like to thank Igal
Ermanok for implementing the simulation.

REFERENCES

[1] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and
S. Ron. Practical locality-awareness for large scale information
sharing. 2005.

[2] D. Bickson, D. Malkhi, and D. Rabinowitz. Efficient large scale
content distribution. In The 6th Workshop on Distributed Data
and Structures (WDAS’2004), July 2004.

[3] D. Bickson, D. Malkhi, and D. Rabonowitz. Locality aware
content distribution. Technical Report TR-2004-52, 2004.

[4] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In In Proceedings of ACM SIGMETRICS, Santa Clara,
CA, pp 1-12, June 2000.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, and M. Bowman. Planetlab: an overlay testbed for broad-
coverage services. SIGCOMM Comput. Commun. Rev., 33(3):3–
12, 2003.

[6] B. Cohen. Incentives build robustness in bittorrent. In Proceed-
ings of P2P Economics Workshop, 2003.

[7] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturighis, D. Swinehart, and D. Terry. Epidemic algorithms
for replicated database maintenance. In PODC, 1987.

[8] K. C. Ellen W. Zegura and S. Bhattacharjee. How to model
an internetwork. In Proceedings of IEEE INFOCOM 1996, San
Francisco, CA.

[9] C. Gkantsidis and P. Rodriguez. Network coding for large scale
content distribution. In In proc. of INFOCOM 2005, 2005.

[10] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and
M. Faloutsos. ”file-sharing in the internet: A charachterization
of p2p traffic in the backbone. In Technical Report, University
of California, Nov. 2003.

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 41

